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Abstract 

These notes are based on a course of lectures given at Stanford, 

and cover three major topics relevant to optimization theory. First 

an introduction is given to those results in mathematical programming 

which appear to be most important for the development and analysis of 

practical algorithms. Next unconstrained optimization problems are 

considered. The main emphasis is on that subclass of descent methods 

which (a) requires the evaluation of first derivatives of the objective 

function, and (b) has a family connection with the conjugate direction 

methods. Numerical results obtained using a program based on this 

material are discussed in an Appendix. In the third section, penalty 

and barrier function methods for mathematical programming problems are 

studied in some detail, and possible methods for accelerating their 

convergence indicated. 
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Introduction 

These notes were prepared for a course on optimization given in 

the Computer Science Department at Stanford University during the fall 

quarter of 1971.    In part they ara based on lectures given during the 

year of study in numerical analysis funded by the United Kingdon Science 

Research Council at the University of Dundee,  and on courses given at the 

Australian National University. 

The choice of material has been regulated by limitations of time as 

well as by personal preference.    Also, much material appropriate to the 

development of algorithms for linearly constrained optimization problems 

was covered in the parallel course on numerical linear algebra given by 

Professor Golub.    Thus,  despite some ambition to cover a larger range, 

the course eventually consisted of three main sections.      These notes 

cover these sections and have been supplemented by brief additional 

comments and a list of references.    A more extensive bibliography is 

also included.    This is an amended version of a bibliography prepared 

by my former student Dr. D. M. Ryan. 

The first section is intended to provide a solid introduction to 

the main results in mathematical programming (or at least to those results 

which appear to be the most important for the development and analysis 

of practical algorithms).    The main aim has been to characterize local 

extrema, so that convexity and duality theory are not treated in any 

great detail.   However, the material given is more than adequate for the 

purposes of the remaining sections.    Opportunity has been taken to 

prevent the recent results of Gould and Tolle which provide an accessible 

and rather complete description of the first order conditions for an 

extremum.    The second order conditions are also considered in detail. 

   ■ 
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The sGcond section on unconstrained optimization is largely restricted 

to that imbclass of descent mothodc which      (a)     requires the evaluation 

of first derivatives of the objective function,  and      (b)    has some 

family connection with the so-called conjugate direction methods.    This 

is an area in which there has been considerable recent activity, and 

here an attempt is made both to summarize significant recent developments 

and to indicate their algorithmic possibilities.    An appendix (prepared 

with the help of M. A. Saunders)  summarizes numerical results obtained 

with a program based on this material.    One significant omission from 

this section is any detailed discussion of convergence.    However, the 

convergence of certain algorithms (those that reset the Hessian estimate 

periodically or according to appropriate criteria)  is an easy consequence 

of the material given. 

In the third section,  penalty and barrier function methods for non- 

linear programming are considered.    This turns out to be a very nice 

application,  in particular,  of the results of the first  section.    These 

methods have advantages of robustness and simplicity but carry a definite 

cost penalty.    However,  attempts to remedy this situation chow some 

promiso.    The material presented in this section has  Jiiiportant connections 

with other areas:     for example,  with the method of regularization for 

the approximate solution of   improperly posed problems. 

Ac knowledgment s 

The material presented here has benefited greatly from discussions 

with Roger Fletcher,  Gene Golub, John Greenstadt,   Shmuel Oren, Mike Powell, 

and Mike Saunders.    The presentation of the course was shaped more by the 

ü 

^ 

2 

O 

tüft ■- i i ■■ ■■    ■■     i ■■   ■ ■ i        —.■ .— == ...,■...,,.,       ,, t.  



l^g^PPiPWPBIBPg?!^^?!^ w-tm-yii w •••mtmw -II . m ^■.•^•fnvim*'HM*.WMV?:rv^**?W^T*n^^ i»^Tr?7r'"rf?'a>»>1i7'^^>';'^™"i7r,7r-:sw"' 

determination of the lecturer to cover as large a field as possible 

than by any consideration for the audience.    In spite of this the level 

of continued interest was most gratifying, and it is a pleasure to single 

out the credit students Linda Kauftaan, John Lewis and Margaret Wright 

in this respect. 

A special vote of thanks is required for George Forsythe who was 

responsible for the invitation to Stanford, and for completing the 

subsequent arrangements despite the efforts of the Australian and U.K. 

Post Offices.    In spite of this he was still prepared to combine with 

John Herriot in keeping the lecturer in reasonable check, and to provide 

the incentive to produce these notes as a CS report. 
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I.    Introduction to Mathematical Programming 
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1.      Minimuro of a constrained function« 

Consider a function   f(x)    on   S c E   -* E,    where   S    is a given x~ —   n       1 

point set. 

Definition;      x     is the global mininum of   f   on   S    if 

f(x*) < f(x)    VxeS    • (1.1) 

Remark;      x     exists, for example, if   S    is finite, or if   S    is 

compact and   f(x)    continuous on   S . 

Definition;      x     is a local minimum of    f   on   S    if    51 8 > 0    such that 

f(x*) < f(x)    VxcN(x*,6) (1.2) 

where 

N(x,&) = {t ; S n [t ; l|t -xlji/ < 6}}    . (1.5) 

If strict inequality holds in either (1.1) or (1.2) whenever    x / x 

then the minimum is said to be isolated. 

Definition;      S    is convex if    x ,x   e S =» 9x + (l-3)x   e S    for   0 < 9 < 1 . 

Example;      If   S    is convex all finite combinations of points in    S    is 
m m 

again in    S  .    That is       J^\.x. eS    where   x. e S ,       ^ \.   = 1 , 
i=l *-* ~' i=l 

X.  >0,    l<m<<» 
i —      '        — 

Definition;      f(x)    is a convex function on the convex set    S    if 

f(öx  + (l-9)x2)  < 9f(x1) + (l-9)f(x2)    ,    0 < 9 < 1  . (1.1*) 

Ä   2 l/2 
11*11 ^  ty,'1'-}        > ^he euclidean vector norm of   t  . 

i-1 1 
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If strict inequality holds when    0 < 9 < 1   then    f   is strictly convex. 

Say    c(x)    is concave (strictly concave)  if    -g    is convex (strictly 

convex). 

Lemma 1.1;      If   f(x)    is a convex function on the convex set    S   then 

a local minimum of   f    is the global minimum.    If   f   is strictly convex 

then the minimum is unique. 

Proof;      It is necessary to consider only the case    f   bounded below. 
-x- ** 

If    x      is a local minimum but not the global minimum   g x        such that 
x-x* x- * 

f(x    )  < f(x )   .    Now, by assumption,    3 6 > 0    such that    f(x)   > f(x ) 

for    x r N(x ,6)   .    Choose   0 > 0    sufficiently small for 
#*• 'V * 

Ox     + (,l-e)x   cN(x ,5)    then 

(i) f(x ) < f(öx + (l-O)x ) as x  is a local minimum, and 

(ii) ±'(9x + (l-e)x ) < 9f(x )+ (l-9)f(x ) by convexity 

< f(x )  unless f(x ) = f(x ) . 

Now assume    x    ,  x       both aro global minima and that    f    is strictly 

convex.    Then 

l>(9x*+ (l-9)xXX)   < wf(:-:,() + (l^^x**)     ,    '» < 9 < 1 

which gives a contradiction.   3 

Definition;      A set   C    is a cone with vertex at the origin if 

xeC=»?wxeC,    \>0.      C    is a cone with vertex at    p    if 

[x-p ; xcC]    is a cone with vertex at the origin. 

  II mm,   i 1      ■■! ■■■■ 
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Definition;      x    is in the tangent cone    T(S,x )    to    S   at    x      if 

3   sequences    {A ] > 0 ,     fx } - xri ,    [x_} c S   such that 

lim llV>c-x0)-xll =0    . (1.5) 
n -•• 

Example;    (i)    S = [x ; (jx - wjj = r} ,    T(S,x0) = tx;xT(x0-w)  = 0}  . 

(ii)    S = (x ; Hx-w'j < r}  .    T(S,x0)  = En    if   x0   in interior of   S , 

T otherwise   T(S,x ) = [x ; x (x   -w)  < 0}  . 

Lemma 1.2;      T(S,x0)    is closed. 

Proof;      Consider a sequence    (t.jeTCS^x )    suchthat    ljt.-t|j -» 0 ,    i -♦ • 

It is required to show that    t eT(S,x )   .    Now   t. eT(S,x ) ^ 3 

[\x] > 0 ,     [x1} c S    such that      lijn (|\ (x^-x ) -t.jl =0  .    Prescribe 

[e.} iO  .    Select   t.    such that    \\t. -t\\ < £^2 , and   j = i(d)    such 

that    ||\J(xJ - x0) -tj < £^2  .    Then    |l\J(xJ -x0) -t|| < ^ =» t e T(S,x0)   . 

'  3 

Leroma 1.3;      (Necessary condition for a local minimum.)    If   f(x) e (T -' 

and if   x      is a local minimum of    f   on    S   then   yf(x )x > 0 , 

VxrT(G,x0)   . 

Proof;      Let    x    be defined by sequences     [\ } ,   [x }  .    As    x      is a local 

minimum   3 & > 0    such that    f(x )  > f(x0)    Vx   £N(xn,6)   .    Consider now 

the restriction of the sequences    (X. } ,   [x }    suchthat    x   G N(x ,6)   . n ~n ~n       ~u 

i/fTc1    at    x0    if   f(x)  = f(x0) + vf(x0)(x-x0) + o(Hx-x0||)   .    Higher 

2 
rrder continuity classes are defined similarly.   For example,    f cC 

if the    o(  )    term can be estimated in the form 

| (x-x0)T 72f(x0)(x-x0) + o(l|x-x0|l2)   . 

8 
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We have 

0 <f(xn) -f(x0) 

whence (note it  is sufficient to consider    x    such that    \\x\\ = 1 ) 

0 <7f(x0)\ (x   -x^) + o(X ilx   -x-ll) 

<7f(x )x+o(l)      as    n -«    . r-i 

I'lxiunplc:       (i)     IT   x   ( G      (the jnterior of    S ) then   1(3,0  = E     . 

Thur.    x    can bo chosen arbitrarily so that    Vf (x )  = 0 . 

(ii)      If    S - {x;||x-wH = r}   then   7(s>*o)  =^;$T^0"^  = 0^  ' 

In particular    if   xeT(S,x )    then    -xeT(S,xn)   .    Thus we must have 

T 7f(x0)x = 0   Yx    suchthat    x (x   -w)  = 0 .    Thus   Vf(x0)  = a(x   -w) 

for some    a . 

(iii)      If   S =   [x ; l|x-w|l < r}    and    Hx0-wH=r   then 
m 

T(G,x )  -  [x ; x  (x   -w) < 0}   .    In this case we have   yf(x )x > 0 

T Vx    euch that    x  (x   -w)  <0  .    Thus    7f(x )   = a(w - x )    for some 

V.i 

CJ 

u 

Ü 

U 

nonne^ativc   <.t  . 

Let    A    be a set in    E n 

Definition;      The polar cone to   A    is the set    A   = [x ; x y < 0 Vy e A} 
*■ 

A     has the following properties. 

(i)        A      is a closed convex cone. 

(ii) If A., c A^ then Ag c A 

** 
(iii) A  = A if and only if A is a closed convex cone. 
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(iv) A = (A ) — the polar cone of the closure of the convex hull 

of A . The convex hull of a set is the smallest convex set 

containing it. Thus AC=nX, AcX, X convex. 

(v)  If A is a subspace then A1 = A . 

Remark;  Lemma 1.5 can be restated;  • if x  is a local minimum of f 

*     •*■ # 

on S then -7f(x ) eT(S,x ) ». 

Lemma l.k:      If   y€T(S,x )     then   -y   is the gradient of a function 

having a local minimum on   S   at   x.   . 

Remark;      It is sufficient to consider the case    jj y || = 1 ,    x0 = 0 . 

Proof;      Let    C    = (x ; x y  <   }      e = 1,2,....   We first show that 

for each   e,    ae(e)>0   such that N(0,e(e)) cz C    .   For assume this is 

not the case.    Then    3 {x } c E   -C with    x   €N(0,l/p) ,    p = 1,2,... 

such that 

T 

~p ~      >   ^-   >    V = 1,2,...      . 

itepit     e 
(1.6) 

# 

The sequence     (     ~2    )   is bounded and therefore contains a convergent 

subsequence z .    By definition   z e T(S,0) , but, by (1.6), 

T 1 z  y  >  -^   >   0 

which contradicts    y€T(S,0) 

10 
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and 

Now let    e.   = sup{e,N(0, E) c C. }  .    We define 
K K 

e^ = min(l, e^  , 

Ek = min^2  ek-l,^k^    '    k > 1 , 

P(z)   =2ll2 H    ,    jlzjl >ep 

k-1 

z    -e k+l 2   z 

ek " ekH 

ek-Lzll 
ek ' Ek+1 

'    11 5 11 G [ ^+1' ek] ' 

o   ,    11 z ll = o 

It is clear that    ev > 0   and    e     monotonically decreasing.    Further 
K K 

P(z) > 0 ,  ?(z) is an increasing function of H z H , and 

21I * 11 
II21! < ^k ^ p(f) <   k-l      • 

Thuc    P(z)  =  o(llzl|)     so that    vP(0)  =0 

u 

Now let    z = x - (x y)y .    We show that, under appropriate conditions, 

T T x y < P(z)   .    It is sufficient to consider    x y > 0 ,  and in this case 
v i 

iM!-xTy < 1MI < ll^ll + fy  . 

T 11X11 ,      ^ If   xeC      then   x y < —^ •    Using (I.?)  vre have 

(1.7) 

^11^11   <   Ml  < ^|!x (1.8) 

Now assume    xeN(0, e)   ,     e < E,   •    Then    jj x H e [ e^.-,, £k]    for some    k>5 

whence   x c C.   .    This gives 

ii 
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However,    II f II > -^ ekfl > Ek+2     whence 

2|| 2 || 
P(z)    >       ^ (1-^) 

so that,  combining (1.9)  and (1.10) 

xTy    <   ^jy P(z) < P(z)     . (1.11) 

Thus the function 

has a local minimum on    S   at   x    = 0 .    Further    f e C      at   0 ,  and 

7f(0)  = -y .     Q 

2.      Some properties of linear inequalities. 

T Definition;      The set    H(u,v) = (x ;u x = v}    is a hypsrplane.    Note that 

the hyperplane separates    E     into two disjoint half spaces 

T T 
R4   = [x ; u x > v} ^    R^  = [x ; u x < v}  • 

Lemma 2.1:     (lemma of separating hyperplane).    Let    S   be a closed convex set 

in    E    ,  and let    x   ^ S   .    Then    3   a hyperplane separating   x     and    S  . 

Proof:      Let    x      be any point in   S .    Then      min jjx - x jj < |jx1 - xJ| = r . 
~-L x e S ~    ~U ~     ~ 

The function    \\x -xJj    is continuous on the closed set    S (1 tx 5 Hx "xoll S T) 
* 

and hence the minimum is attained.    Let this point be   x    .    From 

Figure 2.1 it is suggested that 

(x-x*)T(x*-x )  =0 (2.1) 

12 
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■\ % T1 ,    * 

(x-^ )-(x   -x0)   = C 

Figure 2.1 u 

is an appropriate hyperplane.    To verify this,  note that    X0GR_    SO 

that it remains to show that    S c R+  .    Let    xeS   then for   0 < 9 < 1 , 

|l9x+(l-9)/-x0|l2    >    |lx*-x0ll2 

so that 

.2,1      _*II2 . ^/_.   .*\T/.* jx-x |f+29(x-x )1(x   -x0)    >  0 

a 

and,  letting   9 -. 0 , 

(x-x )1(x   -x0)  >0 

whence    x c R+   .    Q 

D 

Definition:      C    is finitely generated if 

P 
C = [x;x=y[\.  c.,X.  >0,i= 1,2, ...,p}   .    It is clear that    C 

is a cone.    It can he shown that    C    is closed. 

J 

Lemma 2.2;     (Farkas    Lemma).    Let    A   be a   pxn   matrix.    If for every 

solution    y    of the system of linear inequalities 
■. • 

Ay > 0 (2.2) 
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it is true that 

T a y > 0 (2.5) 

T then    a x > 0    such that    A x = a . 

Proof;     Let   C    be the cone generated by    p.(A) ,    i = 1,2, ...,p . 

Then the result of Parkas lemma is that if (2.2) =» (2.5) then   acC  . 

We assume   a^C    and seek a contradiction.    By Lemma 2.1 there exists 

a separating hyperplane.    To construct it let   x     be the closest point 

in   C   to   a .    Then    IJXx* - a||2   has a minimum at    \ = 1 .   Differentiating 

and setting   \ = 1   gives 

(x   - a) x    -  0 (2.10 

By (2.1) the equation of the separating hyperplane is 

(x-x )  (x   -a)  = x (x  -a)  = 0 (2.5) 

which shows that it passes through the origin. 

By Lemma 2.1   C c R+    whence 

vTA(x   - a)  > 0 

for arbitrary    v > 0    so that 

A(x   - a)  > 0    , (2.6) 

but    a e R     whence 

aT(x* -a)  < 0 

which gives the desired contradiction. D 

15.1 

(2.7) 
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Remark;      Another way of looking at this result is that at most one of 

the following pair of systems can have a solution. 

(1) Ax = b    ,    x > 0 

(ii) ATy > 0    ,    bTy < 0    . 

This is an example of a 'theorem of the alternative'. 

3.      Multiplier relations. 

We consider now the mathematical programming problem (MPP) 

min f(x)    subject to 

g1(x)  > 0 ,     i - ^    , 

hi(x)  = 0 ,     i cI2 

Wc assume that    f ,  g.   ,   i G I,   ,  and   h.   ,  i c !„ ,  are in    C      and that 
'  0i ' 1 ' i 2 ' 

Llie constraints on the problem are not contradictory.    This corresponds 

to the problem discussed in Section 1 with    S given by 

S = [x ; gi(x)  > 0 ,   i c^ ,  h^x) = 0 ,  i e I2} (5.1) 

At any point x ? S  let Bn be the index set for the constraints 

:at icfying    g.(x )   = 0  .    If    i c Bn   we say that    g.    is active at   x 

Definition:      S    is Lagrange regular at    x.    iff for every    f   such that 

(i)    f   has a minimum on    S    at    x    , and    (ii)     f cC      at    x      (i.e., 

f c F )    3 u ,  v    such that 

(i)      vf(x0)   =    £ ui76i^+ X vi7hi^0^ (5.2) 
ieB. id. 

(ii)    ^ > 0    ,    i € Bo  • 

Ik 
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This can also be written 

(i) ^f(x0)  = X Vgi(^+   ^ V11!^    ' 
ifl iel. 

(ii) uTg(x )  = 0   ,    and 

(iii) u > 0 

where zero raultipliers axe introduced corresponding to the inactive 

constraints. 

Remark;     If (5.2) holds for    f e FQ ; then   f   satisfies the Kuhn-Tucker 

conditions. 

Example;     It is important to realize that (5.2) need not hold.   Consider 

the MPP 

min f = -x1 , 

subject to   g1 = x1 > 0 , gg <= x2 > 0 ,  g5 = (1 - x^   - x2 > 0 . 

Frcsn Figure 5.1 it is clear that the minimum is attained at    x1 = 1 , 

x    = 0 , and here   g.    and   g,    are active.   We nave 

while 

Vg-L = -7g5 = e2 

7f = -^ 

so that a relation of the form (5-2) is Impossible. 

Figure 5.1 

V 
15 

L'i>w^tfl.il,Hiyiitt-rfiWajhU
,i.r^-.lv,-vr, ., ■■^^.v^^tL.i^^. ^....^„j.^^,**^^.^^.*  -■^.—--^ ^k^-^-..-,.-,,..'...-.—■ ....... .,._.■..  ...... 



^mmm wm wtm m ■ • I,. ,)M "P »i||!W>"iii!»fiJji» l ,|iiilni)M .».wiwv-v ...-wi.i.11,.. i .lim m I.UXIV PDH 

Let 

H0 = {x jy^Cx^x = 0 ,   iel2}   , 

G0 = fe ;Vgi^0^ ^ 0 '   :LcBo^    ' 

Lemma j.l;      S    is Lagrange regular at   x     iff    -yf(x ) e (Gn n Hn) 

for all    f EF    . 

v I 

Proof:      If    -7f(x0) e (GQ fl H0)      then 

-Vf(x0)y > 0 

Y.Y    suc?i that 

tf'i^h ^ ü   , 

Vg.1(x0)y > 0    ,     i r B0     . 

Thus,  by Fai'kas Lemma,    7f(x )    is a linear combination with nonnegative 

Thus weights of   Vgi(x0)  ,     i r B0 ,  and    V\{x0) , -7hi(x0)  ,   i e I2 

{5.2.)  holds.    On the other hand,   if (5.2) holds then    7f(x )y > 0    for 

all    y r G0 n H0  .    3 

Remark:      Lemma 5-1 shows the difficulty with the above example.    Here 

T ^  {x = -ae, , a > 0] ,    G- 0 H0 = (x = ae, , a unconstrained}  .    We have 

T    -- right half plane ,     (Gn 0 H.)      the   %n   axis.    By Lemma 1.4 for 

every    xcT     there is a function with a minimum at    (1,0)    and such that 

-yf = x .    Thus the conditions of Lemma 5.1 e e not met in this case. 

V  ! 

16 

--"■"■"■-■—■"!    iriiiiiUM-"—^-— — - ■- ^■^^■■^L.^;...^/^..-...-.. ■^.:.   ..■...^.i.^^.i^.'v^-.J..^ .,v^..';-i.^ ■■-....; „^ .^ ■ ■■■.^:;,.^^..^..-..:;.^.U-.-.JJ^^:t.^. a 



wummm '■ WgpiliplgjiPBPWipppiBpiliB WB^i^iwwwifiw^wiPwpffwwwwpqwpCTiiiBifffiwi ■■WBWWBqiWWgtBHW i»»/1 '^jf uvi i^^i ^mqp "T7" .7""rv«f»7Tii; rITTC'f •-TI"W-' .-rnK^^ 'irTTV^Mirv*" 

— 

Lemma 3.2;      (GQ n HQ)   C T(S,X0)     . 

Proof;      This result follows if we show that   T(S,x0) c HQ 0 G0  . 

x eT(S,x0) 3 [xn} - x ,   [xn} c S ,   {\n} > 0   such that 

^Ä " ^0) ^ ^ '   We have 

0 = h^^) = ^(XQ) + Vhfy) (x^ - x0) + odl^ - x0ll) ,    i e I2 , 

If 

and 

O^g^)  =61U0)+7gi(x0)(xn-x0)+o(llxn-x0ll)  ,    i€B0 

Multiplying by   \     and repeating the argument used in Lemma 1.5 we have 
n 

Vh^x^x = 0 ,    iel2 ,    ^(XQ)^ > 0 ,    ieB    , 

so that   x e G- n H0 .   D 

Theorem 3.1;     The set    S   is Lagrange regular at   x0    iff 

T(S,x0)* = (G0 nH0)* . 

Proof; If T(S,x0)* = (G0 n H0)* then -yf(x0) e (GQ n HQ)* VfeF0 by 

Lemma 1.5. Thus (5-2) holds by Lemma 5.1. If S is Lagrange regular at 

x0 then by Lemma 5.1 -7f(x0) c (GQ 0 HQ) Vf eF0 . .*. , by Lemma l.k, 

T(S,x0)* c (GQ 0 HQ)* .    Thus    T(S,XQ)* = (GQ 0 HQ)*    by Lemma 5.2.   0 

Remark:     Conditions which ensure that   S   is Lagrange regular at   XQ 

are called restraint conditions.    Theorem 5.1 gives a necessary and 

sufficient restraint condition. 

Corollary 5.1;      (Kuhn Tucker restraint condition).    If   vg^x^t > 0 , 

i e B0 , and   vh. (xjt = 0 ,    i€l0 =» t   is tangent at   x     to a once 

17 
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differentlable arc    x = x(9) ,  x(0)   = x     contained in   N(x0,R)    for 

some    ft > 0   then    S    in lia^ran^e regular at    x    . 

Proof;      It is clear that    t c T(S,x0)    for consider a sequence    (9^ i 0 

and define    [xj = [*(%)] ,     [\}  = [^-}      then ^nJ 

dx(0) 

Thus the Kuhn Tucker restraint condition implies    (G0 0 HQ) C T(S,X0)   . 

The result now follows from Lemma 3.2 and Theorem 3.1.   G 

Lemma j.'j:    Lot    k.(x) c C    ,     k.(x )  = 0 ,  and   ^(x )t = 0 , 

i  -   1,L',...,s <n  .    We assume    ^ E > 0    such that the    7k.(x)   , 

;i.      1,:',...,L;    are linearly independent for    j|x-x || < e   .    Then    ^ 

a smooth arc    x - >:(9)   ,     x(0)   -= x    ,   such that    k.(x(0))   - 0 , 

x-,. 
1   - l,i!, ...,s ,   for    i:jx(9) -x i| < e    and 

dx(ü) 

d9 
= t  . 

Proof:      Let    P(x)  = KT(K KT) "1 K   where    p.(K)  = 7k. (x)  ,    i = 1,2, ...,s 

Then    x(9)    can be found by integrating the differential equation 

dx 

"d9" 
=    (I-P(x))t (5.3) 

subject to the initial condition    x(0) = x    .   G 

Remark:      Let the    k,    be as given in the statement of Lemma 3.3.    Then 

the linear independence of the   vk.    in a region containing    x      is a 

consequence of the linear independence at    x    .    For consider the matrix 

KK    .    At    x = x     this matrix is positive definite as    K   has rank    s  . 

18 
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Thus the smallest eigenvalue is positive.    Clearly it is a continuous 

function of   x   so that it remains positive in a small enough neighborhood 

of   x    ,  and in this neighborhood the   7k. (x)    are linearly independent. 

Lemma J.k:    (Restraint condition A).      S    is Lagrange regular at    x 

if the set of vectors   yg^Cx^)  ,    XeB. ,    Vh.{x ) ,    iel2   are linearly 

independent. 

Proof;      This is a consequence of Corollary 3.1 and Lemma 5.5«    For 

let   t e G0 n H- , and let   B(t)    be the index set such that 

7g.(x )t = 0 ,    ieB(t)   .    Then by Lemma 5.5 a smooth arc can be constructed 

such that    x = x(e)) ,    g.(x(e)) = 0 ,    ieBft) ,    h (x(9))  ,    ielp , 

ü.(x(e))  >0 ,    id -B(t)  ,    x(©) €N(x,6)    for some   8 >0 , and 
X        M X t*t *j 

äx(O) 

dQ = t . a 

Lemma 3.5:    (Restraint condition B).      If   7hi(xC)) ,    ielg   are linearly 

independent,  and if   3 t    such that   76-(xr.)t >0 ,    ieB. ,    7h. (xn)t = 0 , 

icl? , then   S    is Lagrange regular at    x-  . 

Proof;      Assume   w e GQ n H0   but   w^T(S,x0)   .    Prescribe    Uk} 10    **& 

set   w
k =w+ ei^ •    Then   vgi(xo'wk >0 '     ieB0 '    7hi^0^k = 0 '    ieI2 

Now construct    x.   = x]^(6)    such that   ^(0) = x   ,    -~— = wk , 

hi(xk(e)) = 0 ,    iel2 , for   ^(6)    is some neighborhood of   x0  .    By 

continuity there will be a subneighborhood (say   N(x ,6.)    for some 

dx (©) 
6k>0)    suchthat   (i)    ^(^(9)) -=g >0,    ieB0,and 

(ü)    gi(xk(e))>o,    ieVBo   for   *k(e) eN(*0,6lP  '   The ^g""1611* 
of Corollary 5.1 now gives   w   cT(S,x0)   .    But, by construction, 

{w } -♦ w .    Thus   w e T(S,x )    as    T   is closed.   G 
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U.      Second order conditions. 

In certain cases it is possible to furthor characterize local minima 

of f on S by looking at second derviative information. 

Lemma h.l:      Let w(x) eC , w have a local minimum on S at x0 , 

1.T_2 and   ^w(x0)  = 0 .   Then   t 7 w(x0)t > 0   Vt € T(S,x0)   .    If 

LT 2 t 7 w(x0)t >0    VteT(S,x0)    then  38 > 0 ,    m >0    suchthat 

ii2 w(x)  > w(x0) + m||x - x0i|    ,    X€N(x0,6) 

Proof:      Let    [x } ,  [\ }   be defining sequences for   t€T(S,x )  .    Then 

for    n    lar^e enough we have,  as    7w(xn)  = 0 , 

0 <w(xn) -w(x0)  =| (^-^VwCx^C^-^+od^-xJ2) 

■'• 0 - \<V(*r) "w^0^  = 2 * 7 w(x0)t + o(l)      as    xn -* x0  . 

T 2 Now assume   t v w(x )t >0   Vt€T(S,x0)    and   3   no   m >0    suchthat 

w(x) > w(x ) + m||x-x I]      for   x    in any neighborhoc    jf   x    .    This 

implies that for any integer    q ,    3 x   cS   such that    (i)    x   fN(x_,l/q) , 

1 2 
(ii)    w(x ) -w(x )  <- Ijx   -x-ll    .    Select a subsequence of the   x      such 

-q 

X     - X,. 

thai.    C if^        11   /   -   teT(S,x_)   .    Then    (ii) =» tT7 w(x_)t < 0   which 
l-q'^O'1 J ~ ~u - -U - 

c;ives a contradiction.   □ 

LJ 

U 

Definition;      The Lagrangian function associated with the MPP is given by 

£(x,u,v)  = f(x)  -    Eu<8<(x)   "    E v-Jx (x)    . (U.l) 
^       —*       <** m* . —■ X        X       «M •        «•■ X       X      <M 

itl iel. 

u 
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It will frequently be convenient to suppress the dependence of   x   on   u 

and   v    in the case where these are Implied by the Kuhn Tucker conditions. 

In this case (3-2) becomes 

7l(x0) = 0    . (U.2) 

Lanma U.2;      Let   S   be Lagrange regulAr at    x0 ,    f(x)    have a local 

rainlmum on   S   at   x0 ,    and   S1 = [x ; xcS , g^x) - 0, ICBQ}   then 

LT_2 t^ x(x0)t > o , n c TCS^XQ) (^.5) 

Proof;      Note that   I = f   on   S1    so that    X   has a minlaam on   S1 

at    x    .    Also, as   S    is Lagrange regular at   x0 ,    7X(x0) = 0 .    Thus 

the result follows from Lemma U.l.   O 

T 2 
Remark;      If   Sn    is Lagrange regular at   x.   then   t 7 X(xn)t > 0   Yt 

such that   7gi(x0)t = 0 ,    ICBQ    and   7hi(x0)t = 0 ,    i€l2 . 

Example;      Consider 

gl      =      X^+(X2+1)2-1      >0 , gg l-x2-(x2-l)2 >0 

S is illustrated diagramatically in Figure U.l. At x1 = x2 = 0 , 

76-, = 7gp = (0*2) • However S is Lagrange regular at the origin — 

for example, e. satisfies 

7glf2 > 0 ' 7g2f2 > 0 80 

that restraint condition B 

applies. In this case S. is 

the single point x = 6 so that 

TCS^ö) is null. 
Figure U.l 
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Lemma >io;      If    t 7 ,£(x )t >0    Vt e T(S,x0)    suchthat    yg (x )t =0 

V;i < I5#,    such that    u.  > 0    then   'im,    6 > 0    such that 
0 1 

f (x)  > f (x0) + mljx - x0f ,    x e N^ft)     . (h.h) 

Proof:      Assume    :>1    no   n. , 5 > 0    such that (h.h) holds.    Then for each 

integer    qax      suchthat    (i)    x   eN(x,l/q)  ,     (ii)     f (x ) - f (x ) 

<— ijx   -x il    .    Select a subsequence of the   x     such that 

X     • X 

II"^    Z0\\       -  t ' T(S,xJ   .    Set    G =   r  u S-Cx)   .    Then   G>0    on    S, 
I'-q'^oll ~ ~U ieB0 

1      ~ 

i;(x )  ^ 0 , and    f = l+G .    For the subsequence defining   t   we have 

r(x ) - r(x )      G(X ) 
--a p2.+ —=^2 < T   >• ^-5) 

ifeq^ol! teq-&ll ' 

Thus 

T ?                                         G(XJ 
t 7 l(x0)t + lim sup =3—^   <   0 (U.6) 

-    ~       q .•   ||xq-x0|l 

A:-    G(x )  > 0 , the second term is bounded and nonnegative.    Therefore 

ü
(
X

Q
) r^ 

q -•    IKq ' Soil i€B0 
1    1 ~u ~ 

Thus 

Vgi(x0)t = 0 ,    VicB0    such that   ^ > 0 (1+.8) 

so that (U.6)  states that    3tcT(S,x0)     suchthat   t    satisfies (1+.8)  and 

tT 2 that    t 7 X(x )t < 0 .   This gives a contradiction.   D 
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Consider noK the system 

VZi*0)    = 0 

uigi(x)  = 0   ,    i = 1,2, ...,ra , 

^(x)  = 0   ,    i = 1,2, ...,p (M) 

where explicit envunerations of   I1  "ani   I-   are assumed. 

Definition;     J(x0)    is ^e jacobian of the system (^.9) with respect to 

(x,u,v)   . 

J(x0) = 

^^ 

^p^o) 

-^1^0)T  •*• -7gm^0)T -VII^XQ)
1
 ...  -7h (x0)T 

ul7g1^0^ glW 

0 
gm(^) 

0 0 

(^.10) 

Lemma k.k:      If   J(x0)    is nonsingular, then   x0   is an isolated local 

minimum of   f   on    S . 

►  • 

Remark;      Note that the condition   J(x0)    nonsingular imposes strong 

conditions on the problem.    For example, 

(i)     the active constraint gradients must be linearly independent,  and 
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(ii) if gi(xn) = 0 then u, > 0 (this condition is called strict 

complementarity). 

In particular S, is Lagrange regular at x . 

Proof;  If  J   is singular there is a vector 

y 

a       =   0    . 

b 

y 

a satisfying 

(4.11) 

•u 

u 

u 

This relation cives 

(i)        7hi(^o^ = 0    '    i = l,2,...,p, 

(ii)      ui7Si(^o^+aigi^0^  =0   '    i = 1,2, ...,ra ,  and 

2 Ä T     ^- T (iii)    v X(x0)y - ^ ai7gi(x0)    - T ^^(XQ)    =0    . 
i=l i=l 

From (ii) we see that u. > 0 =* 7g.(xrt)y = 0 while u, = 0 ^ a. = 0 . 

Now consider the problem 

T 2 
min y y Zi*0)y 

U 

Ü 

subject to    7Bi(x0)y = 0 ,    irB0 ,    ^(^Q)^ 
= 0 >     ieI2 '  arld    H 2 H    = 1 

Clearly the constraint gradients are linearly independent as 

2y = v(|ly|| )    is in the orthogonal complement of the set spanned by the 

other constraint gradients.    Thus the set of feasible   y   is Lagrange 

regular at every point by restraint condition A.    Let   yn   minimize the 

objective function (the minimum exists as the constraint set is compact), 

then the Lagrange regularity ensures that    3   multipliers    \ ,  a.  ,  ieB- , 

b. ,  iGl0    such that i '        2 

2h 
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^(&)& - ^o - J^y*^ - J: >7hi(-°)T = 0       (''-12) 

v/hence 

x = y^^^o^o= min i^^i z0 

Now if   \ = 0 ,  (^.IS) shows that conditions (i) - (iii) above are 

satisfied and hence   J(x0)    singular.    Thus if   J(x0)    nonsingular, 

then   \ > 0 .    In this case Lemma U.5 shows that the minimum of   the MPP 

is isolated.   O 

5.     Convex programming problems. 

If   g.(x)    concave,    iel1  , then the set    S = [x;g.(x) >0 ,  ielol 

is convex.   The problem of minimizing a convex function on   S   is called 

a convex programming problem.    In this section certain properties of this 

problem are studied.   We require the following characterization of convex 

functions. 

Lemma ;?.!;      If    f(x) eC     then   f(x)    is convex on   S    iff 

f(x) +7f(x)(y-x) <f(y)    ,    x,yeS (5.1) 

Proof:      If   f   convex then, for   0 < \ < 1 , 

f(x+ (l-\)(y-x)) < f(x) + (l-\)(f(y) - f(x)) 

whence,  if   \ < 1 , 

f(x+(l-\)(y-x))-f(x) 
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Let x be any other point of S , then 

f(x) > f(x) - E u.g,(x) = X(x) (5-5) 
~  iel1 

a :L ~ 

where    £(x)    is convex on    S    as the    gi(x)  ,     iel1 ,  are concave.    Thus 

f(x)  > XCx^+VlCx^Cx-^) 

= f(x0)     .     D 
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The necessity follows on letting   \ -. 1 .   Now if (5'1) holds then 

f(\x+ (l-\)y) + \7f(Nx+ (l-\)y)(y-x) < f(y)    , (5.2) 
M n« ^» ****** ** 

f(\x+ (i-My) - (i-M^(^+ (i-My)(y-x) < f(x)   . (5.5) 
M -* •# ****** ** 

Multiplying (5.2) by    (l-\) ,  (5.3) by   \   and adding gives (1.1+) which 

demonstrates sufficiency.   D 

Lemma 5.2;      If   S = {x ; gi(x) > 0 , g^^ concave, iel^   has an interior 

point   x   , then every point of   S   is Lagrange regular. 

Proof;     Consider   x eS .    Let   i€B0   then Lemma 5.1 gives 

Vg.^)(x* -x0) ^.(x*) >0 (5A) 

as   g.(xj  = 0 ,    ieBn .    Thus restraint condition B is satisfied.   D 
i „0 0 

Lemma 5.?:      If   f   convex satisfies the Kuhn Tucker conditions at   x0 

Proof;      In this case (5.2)  gives , I 

I 
Vf(x0) = £ V^^O^ ' uT6(xo) = 0 ' ui ^ 0 * 

iel1 

,i 

3S 

then f has a minimum on S at xrt . 
j 

j 
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Ranark;     If   f   has an interior the Kuhn Tucker conditions are both 

necessary and sufficient for a rainimun of the convex programning problem. 

Definition;     The primal function for the convex programming problem is 

a)(z) =   inf f(x)    ,    Sz = [x ; g(x) >f} (5-6) 

xeS„ 

that Note that if   z1 > z     then   S     c S   '   so that    u)(z-) > (i)(z )    and 
~x — „d zl *~    Z2 — 

interior then   Sw   nonempty for    z > 0    and small enough if   S   has an 

Lemma S3:     (ü(Z)    is convex. 

Proof:      If   x. e S„    , x_ e S^     then, by concavity of   gi ,    ie^ , 
——— „X        Z- -.t        "p 

g(\x1+ (1-Mx2) > ^t (l-\)z2    ,      0 < X < 1 . 

Thus    \x1+ (l-\)x2 € S^^.^ We have 

vCKz^ {1--K)z0)  < inf f^t (l-\)x2) 

^l€S
Zl^2eSz2 

< inf (^(x^ + Cl-MfCxg))      by convexity 

^l€S
2l^2eS

Z2 

<\   inf   f(x.)+(l-X)    inf    f(x ) 

^lGSz ^eSz, 

< Mz^+Cl-MwCzg)     • Ü 

Definition;     The dual function is 

0(z*)  = inf f(x) - gT(x)z*   ,    z* > 0 
xen 

where n is the region on which f , -g^ ,  ^\ >  aa« convex. 

(5.7) 
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Lemma jjiA;      0(z )    is concave. 

Proof;     Let   0 < X < 1 , and   z", z" > 0 , then 
*      * 

0(\z*+ (1-Mz*)  = inf (f(x) -gT(x)(\z*+ (1-Mz2)} 

= inf {\(f-gTz*) + (l-M(f-gTZ2)} 
x 

> \ inf (f - g^z*) + (1-M inf (f - gTZ2) 
-       x ~ ~1 x 

> \ 0(z*) + (lAWz*)    • a 

Lemma ^;     Let   r = [z ; 3 xen   such that   g(x) > z}  .    Then 

^(z*)  = inf (u)(z) -z z )    . 
zer     ~    - ~ 

(5.8) 

,) 

ü 

L> 

Proof: 
T *N [z )  = inf (f(x) -g(x) z )    , 

< inf (f(x) -z z )    , 
xeS 

T * 
= cü(z) - z z 

(z*) < inf (u)(z) - zTz*)    . 
~   ~ zer     ~    ~ ~ 

Now let   gC^) = ^ .    Then 
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f(x1).gT(x)z   >   inf (f(x)-Z^z ) 

-    zl 

> vizj) - ^ z 

> inf (u)(z) - z z ) 
~ zer       ~      ~ ~ 

-r^—WVfr^f,-^,^ 

inf (fCx.) -gT(x1)z*) > inf (u)(z) - zTz*)     . 

ll zcr 
(5.10) 

The result follows from the inequalities (5.9) and (5«10).     0 

Theorem 5.1:    (Duality theorem).      (i)    sup   0(z ) < inf f(x)   . 
xeS z*>0 

(ii) If S has an interior, and 3 x0 such that the Kuhn Tucker 

conditions are satisfied, then 3 z  maximizing JÖf^ ) and equality 

holds in (i). 

Proof;  From Lanma 5.5 we have that 

0(z*) < u)(©)  = inf f(x) 
xeS 

X 
holdc for each    z    > 0  .    Thus 

sup 0(z ) < inf f(x) (5.11) 

z   >0 
xeS 

If   3 x     such that the Kuhn Tucker conditions are satisfied then   x 

minimizes   f   on   S .    Defining   z   = lu1*"^u
m}     where the   ^ > 0 

are the multipliers in the Kuhn Tucker conditions we see that 

0(2*) = f(x0)   .   D 
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Corollary $.1:    (Wolfe's fonn of the duality theorem).    Consider the 

primal problem minimize the convex function   f(x)    subject to the concave 

constraints   gi(x) > 0 >    1 « 1,2, ...,m , and the dual problem maximize 

jC(x,u)    subject to   7 1 = 0,    u>0.    If a solution to the primal exists 
MM X ^ 

then the dual problem has a solution and the objective function values are 

equal. 
u 

Remark;  (i) The linear prograjnming problem 

min a x  subject to  Ax -b > 0 (5.32) 

is a special case of a convex programming problem as linear functions have 

the special property of being both convex and concave — this 1§ an 

Immediate consequence of Lemma 5»1-    This property of linear constraints 

peimlts the previous discussion to be extended to permit linear equality 

constraints.   Note that if the linear equality constraints are not to be 

contradictory, then their gradients must be linearly Independent. 

(11)    If the restraint condition B Is satisfied at   x   , and   f(x)    has 

a minimum on   S   at   x0   then   x.    also solves the linear programming 

problem 

min f(x0)+7f(x0)(x-x0) 

subject to 

(i)        8i(x0)+7gi(x0)(x-x0)  >0    ,    i€l1 ,  and 

(ii)      ^(XQ) + V\{*0) (x - x0) > 0   , 

-^(XQ)-7hi(x0)(x-x0)  >0    ,    iel2    , 

as the Kuhn Tucker conditions are both necessary and sufficient for a 

U 

[ i 
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solution to the linear programming problem.   That the converse need not 

be true is readily seen from the example     min -x     subject to 

1 - x2 - y2 > 0   which has a minimum at   x = 1 , y = 0 .    The associated 

linear programming problem is     min -x       subject to   1-x > 0   which 

has the solution   (l,y)    for any   y .   Thus additional conditions are 

required if the converse is to hold (for example. Lemmas h,3 or k.h 
- 

could be used). 

Example;      (i)    (Duality in linear programming).   Consider the primal 

problem 

T minimize   a x     subject to     Ax-b >0    . 
M#        M *****       ^ 

The corresponding dual is 

T T maximize   b u      subject to     Au-a=0   ,    u>0    . 

If the primal has a solution then so does the dual and the objective 

function values are equal. 

(ii)      (The cutting plane algorithm). 

(a)      Consider the set    S = {x ; g^x) > 0 and gi concave,  iel^ . 

If   x*/te   then   gi(x ) < 0    for at least one   i .    Let   a   satisfy 

e (x ) < g.(x ) ,    iel,   .    Consider the half space 

U = lxjga(x*) + 7ga(x*)(x-x*) >0] .    Then   x^U .   Now if   ga(x) >0 

then, as    g^   concave, 

ga(x*) + 7gct(x*) (x - x*) > ga(x) > 0    . 

Thus    ga(x) > 0 =» xeU    so that 

Sa = [x ; ga(x)  > 0} c U 
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if ir ir 
We have   S c S   c U .   Thus the hyperplane   afx ) + VgL~(x ) (x - x ) =0 

separates   x     and   S . 

(b) The convex programming problem   minimize   f (x)    subject to   xeS   is 

equivalent to the problem   minimize x^,,    subject to   xeS ,    x ... - f (x) > 0 
n+x w nrx       *.   — 

vhere   x   ^^   is a new independent variable (note that the new constraint 

is concave).   This equivalence follows from the Kuhn Tucker conditions 

by noting that the new constraint must be active.   Thus a convex programming 

problem can be replaced by the problem of minimizing a linear objective 

function subject to an enlarged constraint set. 

T (c) Consider the problem of minimizing   c x   subject to   xeS   and   S 

bounded.    In particular we assume that   S c Rn = {x ; Ax - b > 0}  .    We 

can now state the cutting plane algorithm 

(0)        i = 0 . 

T (i)        Let   x.    minimize    c x    subject to   xeR.   . 

(ii)     Determine   a   such that    ^(x.) < g..(x.) ,    Je^ . 

(iii)    If   g^) >0   go to (v). 

(iv)      Set   Ri+1 = Ri n {x ; g^C^) + Vg^) (x - x^ > 0}    , 

i := i+1 , go to (i) 

(v)        Stop.  

u 

u 

I' 

Note that step (i) requires the solution of a linear programming problem. 

(d)    The cutting plane algorithm generates a sequence of points   x^^   with 

the property that 

mm rji rp 
c x   < c x, < ... < c x. < ... < min c x 
~ ~ü ~ - -L ~ ~1 xeS " ~ 

T as   R0 2 R-i 2 • • • 2 S .    Thus the sequence    {c x. ]    is increasing and 
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bounded above and therefore convergent.    Let   x     be a limit point of 

the    [x } .    Then   x GS   and therefore solves the convex programming 

problem.    To prove this, assvune   x  /t S .    Then 

min g,(x ) = gjx ) = -\ <0    . 
i      i ~ 

Let a subsequence    {_x.} -»x   , then, 3 k   such that 

(i)        llär**!! < Ä   ' ^ 

(ii)       ^ < - i 

where   C > ||7gi(x)|| ,    xeR0 ,  ie^ 

Let 

min B^x^)  = SßC^)   • 

Then   gß(xk) < ' 2 '   NoW   X     a 13jnit p0int 0f    ^Xi^ ^ ^   e n Ri '    ^ 

particular,    x  eRj-i   whence 

But 

so that 

cß^ + 7gß(^)(~   "^ ^0 

S^^-^ll   <  ^c   < T 

gß(^ + ^(^(** " ^   <   " T + H^ß^)(x*" ^ ^ 

<  0 

which gives a contradiction. 
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Notes 

1. For properties of tangent cones,   see Hestenes.    Luenberger discusses 

polar cones (which he calls negative conjugate cones) on pp. 157-159. 

Lemma 1.1+ is due to Gould and Tolle.   The proof is due to Hashed 

et al. 

2. Hestenes is a good general reference for this section and Includes 

a proof that a finitely generated cone is closed.   The proof given 

here of Parkas Lemma is standard (see for example Vajda's paper). 

An extensive list of alternative theorems is given in Mangasarian. 

3. The main result is due to Gould and Tolle.   The treatment of the 

other restraint conditions follows Flacco and McCormick. 

h.     The treatment of second order conditions is based on Hestenes. 

Similar material is given in Flacco and McCormick. 

5.      The treatment of duality is based on Luenberger.   A related treat- 

ment is given by Whittle who is good value on applications.    Vajda 

is a good reference for the mathematical programming application. 

Wolfe's papers in both the Abadie books discuss various aspects of 

the cutting plane method. 
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II.    Descent Methods for Unconstrained Minimization 
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1.     General properties of descent methods. 

The class of descent methods for minimizing an unconstrained 

function   F(x)    solve the problem iteratively by means of a sequence 

of one dimensional minimizations.    The main idea is illustrated in 

Figure 1.1.    At the current point   x     a direction   t    is provided, and 

the closest minimum to   x.    of the function 
~i 

Gi(\)   = FO^+M^) 

sought.    At    x.  ,    we have 

G[i\)  = ^(Xi+i^i = 0 

where    x...   = x. + \.t.   . 

(1.1) 

7F(x.) 

Figure 1.1 

Definition;      A step in which   x. 1    is determined by satisfying the above 

conditions is said to satisfy the descent condition.   We consider   t. 

a profitable search direction if   F(x +\t.)    decreases initially as   \ 

increases from zero.   This condition is formalized as follows. 
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Definition;      (i)    The vector   t   is downhill for minimizing   F   at   x 

if   7F(x)t <0 .      (ii)   The sequence of unit vectors    [t.}   is downhill 

for minimizing   F    at the sequence of points    {x.}   if   3 6 > 0 , 

independent of   i ,  suchthat   7F(x )t. < -8(|7F(x )H . 

Example:      The sequence of vectors    t-7F(xi) / ^(x^H)   satisfies the 

downhill condition with   5 = 1.    In this case we say that   t.    is in the 

direction of steepest descent. 

An estimate of the value of   \   minimizing    G.    is readily given. 

We have 

0 = ^i+l^l = 7F^i)ii + Xi ii ^^i^i 

where x^ = x.+ \.t. is an appropriate mean vulue. Thus 
~i  ~i  i~i 

c 

u 

u 

-7F(x.)t. 

LT    2 

6|l^(x)ll 
2„,- t^^FCxJt      '    117^(^)11 

«^ X «MX       K*X M«X 

(1.2) 

Theorem 1.1;    (Ostrowski» s descent theorem).    Let   R = [x ; F(x) <F } , 

and assvune that    F   bounded below and   t  7''F(x)t < K|| t jj   ,    xeR . 

Define 

»11^(^)11 
X.^T  = x. + ~i+l      ~i *i> and 

J 

^^i^i ^ ^W^ll '   IfeiH =1   ' 

for   i = 1,2,...    where   6 >0 .    Then    {F(x.)}    converges, and the limit 

points of    [x.}    are stationary values of   F . 
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Proof;      As    {t.}    dovmhill then    [x } c R .    Expanding by the mean 

value theorem we obtain 

>  ft 

SllvF(xi)|| /6ll7F(xJA2   T   2     _ v 

F(xi+1) = n^) + —Y^- ^(x.)^ +1^—r1-j H7 F^ii 

where x. is a mean value. We have 

^^l+l) ^ F(iCi) 
(»IIVF^H)2  J 51^(^)11 

< F^i) 

K 

K 

K )"■ 

(1.5) 

Thus the sequence    {F(x.)}    is decreasing and bounded below and therefore 

convergent.    Further, from (1.5)* 

\\VF{X±)\\    <   i^K^x^-F^)) (l.U) 

-♦ 0   ,    i -* •    . 

Thus    vF(x )  = 0    if   x     is a limit point of    (x.)  .   D 

Remark;      By (1.2) the step taken in the direction   t.    underestimates 

the step to the minimum of   G.   .   Thus (1.5) holds if the descent 

condition is satisfied so that the conclusions of the theorem are valid 

also in this case. 

Theorem 1.2:    (Goldstein's descent theorem).    Let    R = {x ; F(x) <F } 

be bounded,  and assume   FeC     and bounded below on   R .   Define 
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Lix-^K)  = F^-F^i+^i)    , 

L^ 

where    ft.}    downhill, and the    [x }    are generated by the algorithm 

(i)        h+1 = ~i    if   ^i'**) = 0 • 

(ii)      If   ^(x^l) <a   where   0 < a < 1/2 

then choose   \,    such that   o < \|f(x ,X.) < 1-a , 

else choose   \. = 1 . 
i 

(iii)    x.^^x^X.^ . 

Then the limit points of    [x.]   are stationary points of   F . 

Proof;      A(x.,\)  = -\7l)"(x.)t.+ o(\)   . 

Thus    A(x.,\)  = 0 => IJVFCX^H     0   ais    [t^    downhill so that   x.±    is a 

stationary point.    Otherwise   7F(xi)t1 < 0    so that    ^(x^K) = 1+o(l) 

whence    \|r(x.,0)  = 1 .    Also the boundedness of   R    implies that 

ä(X.,\) < 0    for some   X   large enough so that, as    T|f(x.,\)    is continuous, 

\.    can be found to satisfy condition (ii) of the algorithm.   Note that 

fx,} c R .    We have 

u 

Ü 

U 

J 

a 

F{x±) -F(xi+1)  = -^(xi,\i)7F(x1)ti 

>   ^51^(^)11    . (1-5) 

Thus    {F(x )}    decreasing and bounded below and therefore convergent.    To 

show that the limit points of    [x.}    are stationary values of   F   consider 

hO 
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the subsequence    {x    }   -♦ x     and assume    ||7F(x )1| > e >0 .   Then 

|bF(x    )!| > e    for    i > i0 .   This implies that    inf \     = ^ > 0   as 
"      -P-i " 0 i      ^i       0 

otherwise    sup \|f(x    ,\    ) = 1   contradicting   ^(x.,\.) <l-a . 
i        -M-i    M-i -.i    i   - 

Thus 

\\vfU   )|1   < 
FCx,  )-F(X        ) 

-^ 

-M- X0a(S 
(1.6) 

The right hand side    -.0   as   i -. «   which establishes a contradiction.   G 

Remark;      There are two aspects of this theorem which are of particular 

interest.      (i)    It is necessary to assume only that    feC     in   R . 

However, the boundedness of   R    is used explicitly.      (ii)    The algorithm 

for determining the step length   \.    is readily implemented.    A value of 

\   satisfying condition (ii) of the algorithm will be said to satisfy 

the Goldstein condition. 

Theorem 1.3;      (i)    Let the vector sequence in the Goldstein algorithm 

be defined by 

s.   = -A-VFtx.)1    ,    t.   ^s./HsJI (1.7) 

\  .   (A.) 
where   A.    is positive definite, bounded,  and   X(A.)  = r rrpr > OJ > 0 , 

mcuc   x 

i = 1,2,...  .    Then    [t.}   is downhill with constant   6 = ou . 

* -1      2 
(ii)    Assume that    {x.} -x   , and that    ||A.   -7 F(xi)|l = o(l)  , then 

\.  = l|s,|j    satisfies the Goldstein condition for    i   large enough. 

(iii)    The ultimate rate of convergence of the algorithm is super linear 

for this choice of   \.   . 

hi 
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Proof:      (i) 

^^i^i = 

7F(xi)Ai7F(xi)T 

Xmln(Ai)ll7F^i)ll 

L 

U 

< - cullvF^)! 

(ii)        ^(x^M = 

(1.8) 

u, 

U 

Tirtiere   x.    is a mean value dependent on   \ .    Now, writing 

V^Cx.)  =A"1+Ei 

J 

and noting that    |1E. || - 0   as   i - • , we have 

/      ^      -,      x /     !     .  ~i El h 

ü 

so that 

Ei   !i 
\^*±'V - t1 " 2^ I    ^   if^   a)ll7F(x~)|| 

llEjl  llAjl 
-    2 s. U) 

(1.9) 

U2 

. .^ _ .   . 
,„■.„...^■■■..;-^...^J..V:^..,i ,.^,..:^^-.,.^.th^;^^,^.^^w^^i^^.K^.ft...^^^a:^^^rt^^ 



PPP^^        II   ■■Wmiim^lWW.      HI»!!!.!!        I,,^., nilJI     .     ^F^^, 
'»l"i..!i.^.»i.—M"W»^'.Hil"».i.H»H|l»|J||iii|i|»Wt^.ji 

In particular 

l^llfill)  - 2   '    -   2 
\\\\  llAjl 

U) 
-* 0 ,     i - 

(iii)    Another application of the mean value theorems gives 

s.  = VF(-i)T =" Ai(7F^i) -VF^*))T 

= -A.(72F(x)(x   .x*) + o(||x   -x*|l)) 
X «* X **X        A# f^X ^M 

- (*i-**)+ ^ll^i-x I (1.10) 

Thus 

X.^T -x    = x. +7.s. -x 
~i+l   ^       -i      i~i   ~ 

= (l-r1)(xi-x*)+ 0(11-^-x (1.11) 

From (1.11) the choice    y.  = 1     iK - ||si||)    gives superlinear 

convergence.   D 

2 
Remark;      Theorem 1.5 shows that if   y F   is positive definite in the 

neighbourhood of an unconstrained minimum, then it is possible to have 

algorithms with superlinear convergence without the necessity of satisfying 

the descent condition.    It is not generally considered economic to compute 

the second partial derivatives of   F , and considerable emphasis has 

been placed on developing approximations to the inverse Hessian using 

only first derivative information.   Although the steepest descent 

direction is initially in the direction of most rapid decrease of the 

function it gives in general only linear convergence. 

U5 
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2.     Methods based on conjugate directions. 

The problem of minimizing a positive definite quadratic form is 

an Important special case of the general unconstrained optimization 

problem.   In particular it is frequently used as a model problem for the 

development of new algorithms.    It is argued that in a neighborhood of 

the minimum, a general function having a positive definite Hessian at 

the minimum will be well represented by a quadratic form so that methods 

which work well in this particular case should work well in general. 

Let   F   be given by 

F(x) = a+bTx+ | xTCx (2.1) 

where   C    is a positive definite, necessarily symmetric matrix.   We have 

7F(x)  = bT + xTC . (2.2) 

Consider now a descent step from   x.    in the direction   t.   .    The 

descent condition gives 

0 = ^^i+l^i = *i(C^i+^i)+y 

whence 

where g. = 7r(x.)T . To calculate the change in the value of F in 

a descent step we have 

hh 
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F(ii+hit) ■ F(Ji) - N *T !i+\ iic ii+1 *•! -ic -i 

^ijlVl^lfl0*! 

1 (gl ^ij 
2 tTCt !ic:i 

(2A) 

Example;      (Linear convergence of the method of steepest descent) 

Let    F =|xTCx .    Then (2.U) gives 

!    (x^C2x)2 

^i+i)-^i) = -i -7^37- 
~iC   -i 

f T     ^2 

1 (üi gij 
2 /iC!i 

where   w. = Cx 

We have   FCx^^) JwTc^w.    so that 

F(xi+1) 
,       1 (*I ll'2 
j- — ,-» 

2    wTc w,  ^C'-'-w, 
F(x.) 

The Kantorovich inequality gives 

(J w)' 

wTC"1w wTC w 

Uglgn 

(a1+an)£ 

where a, and a     are the smallest and largest eigenvalues of C 

respectively, whence 

^5 
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F(xi+1)    < 
Vli 
an+(Tl 

H*±) 

which shows that the rate of convergence of steepest descent Is at least 

linear. 

To shew that It Is exactly linear consider the particular case in 

which 

x. = oc v.. + or v „1       1 „1     n „JI 

where   v,    and   v     are the normalized eigenvectors associated with   o. 

and   a     respectively.    We have 

x.^, -- oi+\ + ai+1v   = (1 - l.a, )aj- v. + (l - x4a )ci!i v ~i+l       1   ~1     n   ~n      v      ^i I7 1 ~1    v      fti n' n ~n 

9 

with (from (2.5)) 

C^2 "l- (an)2 < 

v 1'      1    v n7      n 

O 

so that 

^ 1'      1    v n7      n 

0 

and 

a' i+l 
n 

0 

In particular 

a,i+1 

a' 1+1 

or n 

CC 

a: 1-1 

a' 1-1 

he 

—- - ■ ^. ..-.„:...;.■ ....:,. ■   ■ aMii BlüiAgl 
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J. /^i so that the ratios   oct/a2'     assume Just two values for all   1   (depending 

on   1   even or odd).   Now 

and 

so that 

a: 

a 
where   7 = min ( 

1 
X 

"n 
i+1 a n 

1 + 
a: 

or n 

1 + 4+1 

i+1 
n a' 

<   1 ,    and   7    is independent 

of   i .   This inequality shows that the rate of convergence of steepest 

descent is linear. 

Definition;     Directions   t, , tg   are conjugate with respect to   C    if 

t^ct2 = o    . 

In what follows it will frequently be convenient to speak about a 

(2.5) 

I 

ma 

hi 

 -  ■ 
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'direction of search* without intending to imply that its norm is 

unity.   However, the null vector is  excluded fron any set of mutually 

conjugate directions.   It is clear that any set of mutually conjugate 

directions are linearly independent. 

Example:      The eigenvectors of   C    are conjugate.   The property of being 

both conjugate and orthogonal specializes the eigenvectors. 

Lemma 2.1;      Let   t.,...,t     be a set of mutually conjugate directions 
«J- ***** 

(with respect to   C ).    Starting from   x,    let   xo»xy ••*5rH.i    be points 

produced by descent steps applied to (2.1).    Then 

g"? t   = 0   ,    j - l,2,...,i-l      . (2.6) 

T 
Proof:  The descent condition gives g. o   =0 so it is necessary 

only to verify the result for j < i-1 . We huve 

§i!s = ^i+?T!s 

= 0 

Coronary 2.1; The minimum of a positive definite quadratic form can 

be found by making at most one descent step along each of n mutually 

conjugate directions. 

U8 
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T Proof;     From Lenma 2.1 we have      gV, t    = 0 ,    i = 1,2, ...,n . 

Thus   e^1   is orthogonal to   n   linearly independent directions and 

therefore vanishes identically.   G 

Remark;     A method which minimizes a quadratic form in a finite number 

of steps is said to have a quadratic terminatlop property. 

Example;      The sequence of vectors 

t. = - g. •«•     "^   A t ,      i.2,...,n (2.7) 
-1   H li^if-11 

are conjugate.   The algorithm based on this choice is called the method 

of conjugate gradients. 

We now consider the generation of sequences of conjugate directions 

to provide a basis for a descent calculation.   To do this we note that 

the minimum of (2.1) is at   x = -c'  b     so that if we minimize in the 

direction   t = -C' (Cx. + b) = -c'^7F(x1)    then the minimum is found in a 

single step.    In general   C~      is not known in advance, so that we are 

lead to consider processes in which each step consists of two parts 

(i)    a descent calculation in the direction 

t± = - H^ (2.8) 

where   H.    is the current estimate of   C"   , and   (11)    the calculation 

of a correction to   H.    which serves both the purposes of making the 

t.    conjugate and making   H.    approach   c"    .   It is convenient in what 

follows to assume that the   H.    are symmetric.   This seems a natural 

condition given the symmetry of   C   but is in fact not necessary. 

U9 
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If we assrjme that    t   ,    s < i , are mutually conjugate then the 

condition that each be conjugate to   t.    is 

*icis = SiHic~s = o '   8<i' 

and, by Lemma 2.1, this is certainly satisfied if 

HiC!s = Psis   '     s<i • 

and 

Pi = li^^-^iHi^  * (2-15) 

If i.    and TL are expressed in terms of p. and ^. fron (2,12) and 

(2.15) we have 

50 

u 

We write this eqxiation in the equivalent form (raultipQying both sides 

by   xs) u 

«i^s = Ps^s    '      6 < i ' {2^ 

where 

i =^i+i^i ' li = !i+i-!i  * (2-10) 

Consider the symmetric updating formula 

where    i* > \ t  Q-    are to be determined (or prescribed).    We have 

H^i y« = H-i y«   =: Pc dB   ^    s < i , provided (2.9) holds as 

!^s = hhficls= 0'^ iiE±is = ^5:TiHic!s = Ps^^iis = 

a   \   X-äPci    = 0 .    Thus (2.9)  is satisfied for   i := i+1   if 

0 = 1*\{l±E±li)'tx((S.l±)      ' (2,12) 

J 

KJ 
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and 

\    =    - c< 
T 

diyi 
T bl      T 

yiHi5:i        5:1 Hi 5:1 

pi       yiHiyi 
ip W       ill ' 

so that equation (2.11) becomes 

didi     HiyiyiHi 
Hi+1-Hi    Pi.T 

!iyi       yiHiyi 

+ k{ i^!iS + i7^-HiyiyiHi-diyiHi-Hiyidi 
„i yi yiniyi 

= D(pi,Hi) + CiTiviyi {2.1k) 

where 

and 

:i - n   Ti "i a 

\ 

yiHiyi 
T • 

(2.15) 

(2.16) 

Example;      The particular case    p.  = 1 ,    C  = 0 *    i = 1,2, ...      gives 

the variable metric or DFP formula which is the most frequently used 

member of the family. 

The class of formulae described by (2.110 generate recursively a set 

of conjugate directions so that the first of our aims is satisfied.    It 

still remains to show the relationship between the   H.    and   C-    .    To do 

51 
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u 

this note that (2.9) can be written (introducing the symmetric square 

1/2 root   C '      of the positive definite matrix   C ). 

C^^C^C^tg = pßC1/2ts     ,    s » 1,2,...,1-1   , 

or, more briefly, 

Kls   = ClsL     '       s = 1,2,...,1-1    . (2.9a) 

t 
Defining the matrix   f   by   <.(T) = —=—~s ■, nr ,    1 = 1,2, ...,n , and the 

1 (tTCt )1/2 

diagonal matrix   P   by   V±± = P^ >    1 = 1,2,.. .,n , we can write (2.9a) 

in the case    i = n+1   in the form 

Ö^f «TP    . (2.9b) n+l 

Now   T    is an orthogonal matrix so that ü 

A AT 
H^T   = TPT     , 

whence 

H^,  ^C-^TPTV
1
/
2
    . (2.17) n+l 

In particular,  if   P •= pi , 

Hn+1 = pC"1    . (2.18) D 

Remark;  Remember the motivation for developing the recursion (2.1^) is 

the search for efficient descent directions. Specifically we are looking 

not only for conjugate directions but also for good estimates of the 

inverse Hessian. This indicates that p = 1 is the natural choice (or 

at least p = constant ), and almost all published methods use p = 1 . 

However, from (2.17), the choice of p variable may well have, scaling 

advantages in the Initial phases of a computation with a general objective 

function. Presumably the strategy for choosing p should make 

p -♦ constant to ensure a fast rate of ultimate convergence. 

j 
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Lemma 2.2;  Provided the descent condition is satisfied, 

Hi+3ii+il^i  ornu11- 

Remark;      In what follows it is convenient to drop the   i    subscripts. 

Quantities subscripted   i+1   will be starred.    In what follows we assume 

p    is constant. 

Proof;     We have (using the descent condition, the definition of   t , 

and   d = xt ) 

T T dd1     HyyH 
D(p,H)g* = (H+ p =5 f^-) f 

dy     y-'Hy 

= Hy + Hg - 
Hy/HCy+g) 

"T y Hy 

i yd 

i (d - -f^-   Hy)     . 
K y Hy     ~ 

Whence 

H g (7 + C-rvg )v    .      D (2.19) 

* * 
Remark;      (i)    The condition that   H g   =0   when   v ^ 0   gives a 

condition which determines    £ .   We have 

T* 1   *T „ 1*T* vg   =-rg    Hy=--g    Hg 

so that (from (2.19)) 

1 
C   = 

Xg     Hg 
(2.20) 
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* 
Provided this value of    C   is excluded from consideration then   x     is 

independent of    ^ .   Note that this result is true for a general 

function as no properties specific to a quadratic form have been used 

in its derivation. 

(ii)    We can only have   v = 0   with   d   and   g     nonnull if   H   is 

singular, and in this case   H     is also singular and the null space of 

H*   is at least as large as that of   H .   This follows from (2.15) which 

can vanish only if   (a)    Hg* = 0     and   1 + -^ = 0 , or   (b)    Hg   and 

Hg*   are parallel.   Now if   H   is singular    a w ,    vTH = 0 .   Thus 

T T * w d = 0 > and hence   w H   = 0 . 

Clearly it is important that   H.    positive definite   =» Hi+1   positive 

definite,    i = 1,2,...    in order that premature termination should be 

avoided   (H e    = 0   and   H     positive definite   =» g   =0   whence   x     is 

a stationary point).    Conditions which ensure this are given in the 

following lemma    (due to Powell). 

Lemma 2.?;      If   0 < p,T <• ,      H   positive semidefinite,  and 

HH  v = v   (where   H      is the generalized inverse of   H ), then   H     is 

positive semidefinite,  and the null space of   H     is equal to that of   H 

provided 

c  > 
y d 

(dTH+d)(yTHy)-(dTy)2 
(2.21) 

Proof:  We first note the identity 

D(p,H) = (l + uyT)H(I + yuT) 

u 

> i 

(2.22) 

where 

5I+ 
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u    = 
1 r^d-^Hy^l    . 

\/(dTy)(yTHy)    ^ VT       J 

(2.^) 

and 

det(l + uyT)  = l+yTu = \/-2- (2.2U) 

T T 
so that, by the assunrptions,    I + uy     is nonsingular.   New   y v = 0 

so that   H     can be written 

H* = (l + uyT)(H+CTwT)(l + yuT)     . (2.25) 

Thus the problem reduces to considering H+ ^TW . We have 

H+Cf wT = H(I+C1^ vv )  * 

* +      T 
The null spaces of   H   and   H     will agree provided   I+^TH  VV     is 

nonsingular.    The condition for singularity is 

0 = det(l+ C;TH
+vvT) 

T   + 
= 1+ CTV  H   v 

Noting that   HH+H=H,and   HH  v = v=»HH   d = d   we have 

.TTI+ T„+ 
T T dy      y1Hy 

1+ C T V1 H   v = 1+ C T (d1 H   d - 2 ^p + ^-f- ) 

= 1 + ^T (dTH+d 
(d y) 

T y   H y 

and this vanishes provided 

y d 
C    = 

3T„+ ,x/ T 1^x2 (d^H^^C/H^-Cy^d) 
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The stated result is a consequence of this and the observation that 

decreasing   £   below this value will make   H     indefinite.   D 

Remark;     (i)   The condition on   T   is autcmatically satisfied if 

H   is positive definite and the descent condition is satisfied for then 

T T T dy=-gd = xgHg.   However the lemma does not require that the 

descent condition be satisfied and remains valid even though the exact 

minimum in the direction   t   is not found.   In this case the condition 

on   T   is necessary. 

Corolary 2.2;      If   H1   positive definite, and   Hi+1 = D(p,H.) , 

i = 1,2,..,   then provided the descent condition is satisfied for 

i = 1,2,...    then   H.  ,    is positive definite. 

Proof;     This is a consequence of (2.22) and the above remark which shows 

that if   H    is positive definite, and if the descent condition is 

T satisfied, then   I + uy     is nonsingular.   D 

Theorem 2.1;    (Dixon's equivalence theorem).    If    (i)    the formula {2.lh) 

is used to generate descent directions,    (ii)    £.    satisfies (2.21) for 

i = 1,2,...   and   H,    is positive definite, and   (iii)    the descent 

condition is satisfied in each descent step» then the sequence of points 

generated by the alcorithm depends only on   F , H, , p , and   x.    and 

is independent of   £.,    i = 1,2,...  . 

Remark;     It is important to note that   F   is not restricted to be a 

quadratic form in this result. 
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§ 

Proof;      Let    0^^=11-,    D.  = D(p,Di ,)  ,    i = 2,3,...   •    We show that 

if   H.  =D.+ad. dT , then   H.^n = D.^n + ßd.^n d^.   .    By Lemma 2.2 we 
i       i      -vi-i ' i+l       i+1   K~l+l-i+l " 

have   H   = D(p,H) + 7 d* d^  .    Now 

D(p,H)  =D+p==- 
dy 

ddT      (D + addT) yyT(D + addT) 

yT(D + addT)y 
+ add"1 

rn m rn '"PT ^TPT1 

ddT      D y y1 D + a(y d) (D y d1 + d y1 D) + ^(d'-y)   d d1 

= D + p ^- 
dy y Dy + a(y1d)£: 

+ add 

-Dyy   Da 
T 

y   D y 
+ a(yTd) (D y dT + d yT D) - a(yT D y) d dT 

= D 
y Dy + a^dr 

* 
D   + 

a(yT D y) y d 
T 

yd 
(d - -~^ Dy)(d - -=—- Dy)J 

y Dy + aCy^)^   ~     yDy~~     yDy" 
(2.26) 

By Lanma ^.2,    d   ||D(p}H)E    .    By (2.26)    D(p,H)g   || D g    .    Thus 

cLJlDjß.,     j-l,2,...,i    ^    d^JlD^^g .    But the case   j = 1 Zi+l11   i+12i+l 

is a consequence of Lemma 2.2 so the result follows by induction.   D 

Example;      Equivalence results for a wide class of conjugate direction 

algorithms applied to a given positive definite quadratic form can be 

demonstrated by noting that at the i-th stage we find the minimum in the 

translation to   x     of the subspace spanned by   t-, ...,t. , and that this 

sub space is aleo spanned by   H-g-, ...^H-g.   .    Thus   x.+1   depends only on 
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Proof;     We have (as    g   d » 0 ) 

(g^Dy)2 

g    D   g      =    g     Dg £-  

gDg +gDg 

(g     Dg )(giDg) 

g     Dg  +g  Dg 

Thus 

«T   #  # -»(T^   ♦       T^ 
gDg gDg       gDg 

(2.2?) 

By Corollary 2.2, the   D.    are positive definite so that the desired 

result follows from (2.27).   G 

Remark;     This result indicates a potential defect of the DFP algorithm. 

For if the choice of   D,    is poor in the sense that it leads to too 

small a value of   g? D, g,      then the algorithm has no mechanism to coi. «ct 

this, and must initially generate a sequence of directions which are 

nearly orthogonal to the gradient.   This must also happen if, for any 
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x , ...,x     and not on the particular updating formula for the inverse 

Hessian estimate.    If   H,  = I   this equivalence extends to the conjugate 

gradient algorithm (2.7). 

Lemma 2.U;     If the descent condition is satisfied at each stage then 

the sequence   g?D. g.  ,    i = 1,2,...    is strictly decreasing provided   D1 
A«!    X **x ^ 

is positive definite. 
u 

u 

V Dy 

/ *T„  *N2 
(g    Dg ) u 

L) 

O 

u 
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reason, an abnormally small value of   g Dg   is generated at seme stage. 

A possible cause of such behaviour is poor scaling of the problem. 

Lemma 2.5;     Corresponding to the formula (2.lU) for updating   H   there 

is a similar formula for updating   H"   .   Specifically we have 

where 

H       = D(p,H)  ■'•+7liWWA 

yy ,-1     „-1.,_!_.     x ü 1    /..^„-1^-l^JS 
p dxy     d'y 

T   -1 diH ■'•d 
V-     =    "     T     "        ' 

dy 

(2.28) 

D^H)-"1 - H--1* i^r+V.)^ 1 (yd H^+H'-'-dy1)    , (2.29) 

(2.30) 

w    =   y - — H^d        , (2.31) 

and   7   is related to    g   by 

7    =   - XllL 
T   -1 

1+CTVXH    v 
(2.32) 

Proof:     From (2.22) we have 

■XM)-1 - (i -sffyJ) H-^I -7i 2 f) 

and (2.29) follows from this by an elementary calculation.    From (2.25) 

K*-1 - (I -v/f yuT) (Hn^vf)"1 (I -y/f uy1)   . 

- (I -x/i^KH-1 LL_^„-1VA-1)(1 -/Tuy^y 
v <" - - i+frv^H ^T       "- y p --   - 

(2.33) 
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Now 

« -^w  , (2.5^) 

so that (2.28) is a direct consequence of (2.53) and (2.3^). D 

Remark:  If we take 7 = - -J-  in (2.28) then we obtain 
  yd 

i    1  1 yyT  H^dd1^1 

p yd    d H d 

-(I+zdV^I+dz1) (2.35) 

where 

z = 

We have 

D(p,H_1)"1 = G(p,H"1) + -^wwT 

yd"" 

as dTw = 0 . 
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(2.36) 

= (l+z d
1)^"1* -|-wwT)(l+d

Tz)        (2.37) 
~ ~      yTd ~ ~ 

u 

Ü 

o\ m 
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To summarize these results we have the following: 

(i)     D(p,H) = (l+uyT)H(l + yuT) > 

^(p^H"1) = (l+2dT)H"1(l+dzT) 

(ii)    DC^H)"1 = GCp^"1) + -jp WWT  , 
y1d -" 

GCPJH
-1

)"
1
 = D(p,H) + ~ vv7  . 

> update foraula update formula for Inverse 

D(p,H) 

T               T 
dd1     Hyy^H yyT 

H"1* (7+^)^ s- (yd'H^+H^dy1) 
p        dTy     dTy   -"• 

********                                                                         \ 

" > p    m     ■      ijf 

GC^H"1) 
,      .y/     H^dd1^1 

^               n                  tn                      m 
H+(p+T) «a i- (dy^ + Hyd1) 

dy    dV   ','~          ""              j 

D(p,H) ,    GCp,!!'1)   have been called dual formulae by Fletcher. 

T Lemma 2.6t     Let   A   be a symmetric matrix,   A = TAT     where   A   diagonal 
iff 

(AIJ as X^ »    i = 1*2, ...,n) , and   T   orthogonal.   Let   \^ f    i « 1,2, ...,n 
T be the eigenvalues of   A+aaa   , then either   cr > 0   and 

Xj. < X* < Xi+1 >    i = 1,2,.. .,n , or   o < 0   and   Xi.1 <\^<\ • 
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Proof;     We have 

det[A+aaaT-\I} = 1T(\-M det{l + o(A-\l)"1(TTa)(TTa)T} 
"- i=l   1 -       - 

= ft (VM (1+ <y(TTa)T(A - XI)"Va)) 
i=l   1 

n        2 

1=1 i &. V^ ii- 

and the desired result Is an easy consequence of this expression.   D 

In the following theorem we consider specifically the minimization 

of a positive definite quadratic fozn.   We assume that the initial 

estimate of the Hessian   H,    is positive definite, and we make use of 

the following sequences of updates for the current Hessian estimates 

(a)   H^-DCP,^)     ,    1-1,2,...,   and 

(h)   H1+1 - G^H"1)'1   ,    1-1,2,...    . 

Further we do not assume that the descent condition is satisfied. 

Theorem 2.2;     (l)   Let   K, - C^ VL.C1*    , and let the eigenvalues of 

K.    ordered in increasing magnitude be   M ' ,    J - 1,2, ...,n .   Then 

if   \W > p   then   \^ > \^ > .. • > p , «hile If   M1' < p   then 

^ - ^ ^ ••* - p   for   ^ ' 1'2'**-»n *      f11)   !•«*   Kj. - C^2HiC1^2 , 

and let the eigenvalues of   K.    be   ^^ ,    J - 1,2, ...,n .    If   M' > p 

then   fä > }Sf) > ••• > p » while if   ffl < P   then 

\^ <^ < ••• <P   for   i - 1,2, ...,n . 
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Remark;      This result Is Important because it shows that we have a 

•weak' convergence result for these Hessian estimates when minimizing a 

positive definite quadratic form even «hen the descent conditions is 

not satisfied at each step. 

Proof;    Noting that   C^ d = C~^'y = a,we can write the formula for 

updating   K   as 

T T aax      Kaa K 
K   = K+p T T a a      a  Ka 

We can break this into the two operations 

J = K - 

T 

axKa 
and 

J+p 
aa 

a a 

Note that   J   has a zero eigenvalue,  and that   a   is the corresponding 

eigenvector.   By Lenma 2.6 we have   \(J) ■ 0 , and   X., < X (j)  < \ 

for   J « 2,3j...>n .    The rank one modification which takes   J   into 

K     changes the zero eigenvalue to   p   and leaves the other eigenvalues 

of   J   unchanged.   Assume that   X.(j) < p < ^S+TCJ)   then reordering the 

eigenvalues in increasing order of magnitude we have   XT ■ Vo-i (J)  » 

k « 1,2, ...,j-l ,    xj - P »    ^k " \(J) '    k-J+l,...,n.    This 

establishes the first part of the theorem.   The second is demonstrated 

*-l in similar fashion by noting that   K       satisfies a formally similar 

update relation.   This establishes the result for the eigenvalues of   K 

and hence for their reciprocals.   D 
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Remark;     Note that both   H.    and   H.    t*re positive definite     i = 2,5». 

if   H,    is positive definite.    In this case the result does not depend 

on the descent conditions being satisfied. 

Theorem 2.3:      Let   H   be positive definite, and consider a step   d   in 

the direction    -Hg .    Let    H* = D(p,H) ,    H = GtaH-1)"1 = 

D(p>H) + -J- vvT, and   H0 = eH+ (1-9)H* = D(p,H) + -^r vJ1 .    Let 
yd yd 

* 
K = C1/2HC1'2 , and define   K" , K , IL    similarly.   Let the eigenvalues 

of 
*     * .9 K , K   , K , IC   be   \. , X. , *... , and   X..   respectively, 

9 
J=l,2, ..,,n.    Let   0<0<1.    If   X. >p   then   \ > ^1 > ^^ > ^^ > P 

6 ,9 
while if   X. < p   then   >**<>•* <K <>**< P •   If   ©^ [0,1]    then   \. 

need not lie in the interval defined by   \     and   p . 

Proof;      It follows from the definition of   H   ,   H , and   HQ   and 
*        0      * 

Lemma 2.6 that   ^1 < ^-4 < ^i >    J = 1,2, ...,n , provided   0 < 9 < 1 . 

The first part of the result is now a consequence of Theorem 2.2.    To 
Q 

show that \.   need not lie in the interval defined by \. and p , 

consider the example 

C = 
1+e     /E 

/E        e 
H = I    ,    p =1 

0 

1 

We have   ^ = T] ,    \2 = 1+ 2e - 11   where   7) = | (1+ 2e -Vl+p-e ) .    Thus 

T)   is positive and   0(e).    In this case we have 

K = C T     = 

T a  Ka 

T a a 

,1/2 1 v ) i  v = a — Ka  = 
V/e 

0 
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It is readily verified that   K '{%   °].scttet   Kt\l   \\ 
IL.    =     1+

0
2e     i     •     In ^o*11 cases eigenvalues lie outside the 

prescribed interval.   In the first case we have   0 < 1] , and in the 

second   l+2e   > l+2e-1| . 

Remark;      This res-ilt shews that   fi' gives the best improvement in the 

eigenvalues   < p , while   H     has a similar property for those   > p . 

This suggests an algorithm in which a choice is made between updating 

H   to   Ö    or   H     depending on some appropriate criterion.   Fletcher 

suggests that if   T > 1   (that is,    yTHy  > ^C^y ) then   H     should 
MM M t»0 

be used, while if   T < 1   then   ft   is chosen.   He has used this criterion 

in an implementation of Goldstein's algorithm, and has reported satisfactory 

results. 
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Notes 

1. For Ostrowski's theorem see his book 'Solution of Equations' 

(2nd edition) or Kcwalik and Osborne.    Goldstein's theorem is from 

his paper 'On steepest descent« in SIAM Control, I965.   Theorem 1.5 

is abstracted from Goldstein and Price,   'An Effective Algorithm 

for Minimization', Num. Math. I967. 

2. For background material see Kcwalik and Osborne.   The form of the 

update for the inverse Hessian is due to Powell 'Recent Advances in 

Unconstrained Optimization' to appear in Math. Prog.    It is a 

specialization of a form derived in Huang,  'Unified approach to 

quadratically terminating algorithms for function minimization', 

JOTA, 1970.    The form (2.1U) and the result of Lemma 2.2 are 

probably due (in the case   p = 1 ) to Fletcher 'A new approach to 

variable metric algorithms', Comp. J., 1970, and Broyden,   'Convergence 

of a class of double rank minimization algorithms', JIMA, 1970. 

Lemma 2.5 is due to Powell (to be published).   The product update 

form (2.22) is due to Greenstadt (to be published).   Dixon's paper 

containing Theorem 2.1 is to appear in Math. Prog.   The significance 

of (2.27)  for the successful performance of the DFP algorithm was 

noted in Powell's survey paper already cited.   Attention was drawn 

to the dual updating foimulae by Fletcher.   This material together 

with Theorems 2.2 and 2.5 are included in his paper already cited. 
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APPENDIX     Numerical Questions Relating to Fletcher's Algorithm 

Ü 

1.      Implementat ion 

In this section we consider two questions relating to the implemen- 

tation of Fletcher's algorithm.    These are 

(i)      an appropriate strategy for determining   \   to satisfy the 

Goldstein condition, and 

(ii)    the use of the product updating formulae for the inverse Hessian ~ 

estimate. 

In his program   Fletcher uses a cubic line search to determine   \ .    Here 

we use a somewhat simpler procedure which has the advantage of requiring O 

only additional function values.   Also we work with the Choleski decompo- 

sition of the inverse Hessian estimate.    This has certain numerical 

advantages which have been outlined by Gill and Murray^ .   In particular, O 

it is possible to ensure the positive definiteness of   H. , and this can 

be lost through the effect of accumulated rounding error when direct 

evaluation of the updating formulae is used.    Another possible advantage J 

of the Choleski decomposition is that we can work with an estimate of 

the Hessian (that is   H"   ) rather than with   H    as division by a triangular 

matrix does not differ greatly in cost to multiplication.   We felt this -' 

could well be an advantage in problems with singular or near singular 

Hessians,  in which case   H   would be likely to contain large numbers. 

To Implement the line search we note that by Theorem 1.2 we should 

test first if   T|f(x.,t.,i|s.||) = \|f(x ,s.,1)    satisfies the Goldstein condition. 

This requires the evaluation of   F(x + s.)  , and this, together with the 

_7 ~—~ ' 
-' NPL Mathematics Division, Report 97, 1970. 
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known values   FCx.)    and   F^x ) = 7F(x1)8i ,  gives sufficient information 

to determine a quadratic interpolating polynomial to   F .   We write this 

as 

P(\)  = F(x,)+Fl(x,)\ + A\c (A.l) 

where A is to be determined by setting P(l) = F(x. +6.) . This gives 
wX   MX 

A = F^+s^ -FO^) -F«^) 

= F'(xi)(t(xi,si,l)-l)  • 

The minimum of P(\) is given by 

To test if this is an appropriate value we compute i|r(x.,s.,\) . 

gives 

i   i /    l^v^i) \ 
^(^fiA)    =   2 + 2 \ 1 1 =:— ? 

(A.2) 

(A.3) 

This 

(A.10 

where   \    is a mean value.   Thus, if   F    is quadratic and 

ilf(x.,s ,1) <CT   then   \   given by equation (A.3)  satisfies the Goldstein 

condition for any allowable   a    (normally   a    is chosen small — 

say   10     ):    For nonquadratic   F   the test is satisfied if the relative 

error in estimating   ^ F'^x^^s.)    by   A   is not too large. 

This analysis provides the basis for our method which is given below. 

Algorithm 

(i)       Calculate    \\B^\ , set   w = min(l,||si||)  ,    \ = 1 . 

(ii)      Evaluate    \|f = i|f(x.,s.,\)  . 
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(iii)    If   \ < a   then begin   p\ = \ , 

go to (ii), end. 

(iv)      If   \ < 1-a    6° "to EXIT . 

If   \ > 1   then begin   if   \ > l/w   go to EXIT, 

\ = 2\ , end. 

else   \ = .5(^
+
PM    • 

go to (ii). 

U 

LJ 

Remark 

(i)     Numerical experience has shown that the value of   X   predicted in 

(iii) can be too small, and that an additional instruction 

If \ < s^p\ then \ = B*pX 

should be included.    A value for    s    of about    .1   has proved 

satisfactory    (1/8   was ueed in the numerical experiments reported 

in the next section). 

(ii)    It is readily verified that     lim +(x ,s ,\) = 1 .    Thus the 

algorithm can be expected to return a value of   X   satisfying the 

Goldstein condition unless   i   exhibits rather pathological 

behavior. 

Li 

I 1 

u 

We write the Choleski decomposition of   H   as 

T H = R R (A. 5) 

where   R   is an upper triangular matrix.    Thus we require to find   R 

such that 

(A.6) *T * * 
R    R    = H 

where   H     is given by either 
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.^«TT (i)     H   = (l + uy^rRd+yu^ ,    or 

(ii)   H* = (I + uyT) {RTR + t T w1}(I + yux)    . 

The second case can be reduced to the first if we vrite 

ftT rR  = R
X
R+ST w" 

To calculate   R   note that 

(A.7) 

RTR+5TvyT = [RTl/^v] 

R 

/fFvT 

= [RT | /? v]QTCi 
/TT v1 

(A.8) 

where   Q   is orthogonal.    Thus we seek an orthogonal matrix   Q   such 

that 
r R 1    r.1 

(A.9) 
Q 

/Fv1 

R 

0 

Let W(i,j,{p,q}) be the plane rotation such that W(i, J, {p,q])A 

combines the i-th and j-th rows of A , and reduces A^ to zero. It 

is necessary that p be either i or j . Then Q is given explicitly 

hy 

Q ="n'w(i,n+l,[nfl,i}) (A.10) 

i=n 

It is readily verified that the zero introduced by each transformation 

is preserved by the subsequent transformations provided they are carried 

out in the order indicated. 
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Consider now the problem of consti-ucting the Choleski decomposition 

of   STS   where   S = T + ab   , and   T   is upper triangular.    This corresponds 

to our problem with the identifications   T = R   or   ft , 

a = Ry   or   Ry , and   b = u .    In this c-ase the decomposition is done in 

two stages.   Our method uses ideas due independently to Stoer, Golub, 

and Gill and Murray. 

(i)     We determine an orthogonal matrix   Q.    such that 

Q^ = ||a||en    . (A.ll) 

If we set 

^ =J|Tw(i,n,{i,*}) (A.12) 

w 

ü 

O 

.i 

i=l 

where the   *   indicates that the rotation is defined by being applied 
m 

to zero an element of a vector, then   (^S = Q^T+Hal^b       differs from 

an upper triangular matrix only in having possible nonzero elements in 

the last row. 

(ii)     To complete the determination of   R     we sweep out the elements ;> 

in the first    (n-1)    places in the last row of   ^S   by plane rotations. 

Thus   R     is given by 

R* =Q2(Q1T+lHlenb
T) (A.15) 

where 

Q2 =  TT   W(i,n,{n,i})    . (A.llO 
i=n-l 

It will be seen that the updating of the Choleski factorization can 

be carried out very cheaply. Depending on the update formula used, the 

major cost is either 2n or 5n plane rotations. It should be noted that 
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yTHy  =  llRyll2 a (A.15) 

is required In the update formula.   Thus   a   can be already available 

for   S . 

2.     Numerical Results 

In this section we report the results of numerical experiments 

carried out to test some of our techniques.   We consider four line search 

strategies: 

(I) a standard cubic Interpolation procedure with   \ = 1   as Initial 

search Interval, 

(II) a standard cubic Interpolation procedure with   \   given by the 

step to the minimum in the previous line search, 

(iii)    a strategy for satisfying the Goldstein condition in which   X 

is reduced by the factor   l/8   if   \|f < a ,  and 

(iv)     the method for satisfVlng the Goldstein condition given in the 

previous section. 

Product form updating for the Choleski factorization of both   H   and 

H*    = G     has been implemented,  and the results obtained for each are 

given. 

The problems considered include: 

(i)   Hilbert: Minimization of a quadratic form with matrix given by 

the Hilbert matrix of order 5 . Here 

-■iki 
(x1-l)(xj-l) 

i+J-1 

and the starting point is given by 

xi = - Vi     *      i = 1,2,...,5 • 
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(ii) Banana(n) :    The Banana function In the cases   n = 2    (the 

Rosenbrock function) and   n = 8 .   Here 

n-1 
F=  E   [100(x      -x^)^+(l-x)d}   , 

and the starting point is given by 

x. = -1'2  If 1 odd, otherwise x. = 1 

(111) Woods: Here 

F = 100(x2-x^)2+(l-x1)2+90(xj+-x^)2 

+ (l-x5)2+10.1((l-x2)2+(l.xu)2) 

+ 19.8(1-x2)(l-xu)    , 

and the starting point is 

xT = [-5,  -1,  -3,  -1}    • 

Singular:   Powell's singular function is designed to test the 

performance of algorithms on a function with a singular Hessian 

at the solution.   Here 

F = (x1+10x2)2+5(x5-xu)2+ (x2-2x5)^+10(x;L-xu)^    , 

and the starting point is 

xT = { 5 , - 1, 0 , 1]    . 

(iv) 

(v) Helix:   Here we define 

„      r 2^   2-ll/2 R  =   {X1+X2}   ' , 

T = if x1 > 0 then 5- arctan I — 1 

if xn < 0 then yr- arctan 
J. cTT 
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and set 

F = 100((x   -1JOT)
2
+ (R-1)

2
) + X? 

The starting vector is 

xT = [-1,0,0}    . 

Numerical results are given in Table A.l.   For historical reasons, 

the test for terminating the calculations was based on the size of   ||s |1 

-8 
(  \\s. jj < EPS/n   with   EPS = 10'   ).    This proved reasonably satisfactory 

for all cases except the singular function — in fact in all other cases 

the   ultimate convergence was clearly superlinear, and the results were 

accordingly only marginally affected by the size of EPS.    In the case 

of singular the convergence test proved difficult to satisfy in most 

cases (indicated by   *    in Table A.l), and these computations were 

terminated by the number of iterations exceeding the specified limit. 

However,  in all cases the answers were correct to at least six decimal 

places.    There is some variation in the   H   and   G   columns.    This shows 

the effect of rounding error,  as these would be identical in exact 

arithmetic.   The most interesting case is the   H   column in both cases 

of the Banana (8) when satisfying the Goldstein condition.    In these 

cases both   H   and   G   foiroulae produce very similar results until the 

10-th iteration at which point the   H    formulae produce much larger 

reductions in   F   than do the    G .    However, this progress is not main- 

tained and at the 20-th iteration (in the case of the line search 

algorithm of Section 5) the   H   matrix becomes singular and the iteration 

is terminated.   A restart procedure could have been used at this stage. 

The numerical results indicate that the new algorithm is promising. 

In general, although more iterations are required, we make significantly 
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fever function evaluations In comparison with the routine using a 

standard line search.   As only one derivative evaluation is required in 

each Iteration, the real saving can be considerable.   We note that on 

the basis of the evidence presented it is not possible to draw conclusions 

as to the relative values of the   H    and   G   algorithms.   Hoirever, that 

both manage to produce very comparable results provides some evidence of 

their stability. 

The program which gave the results presented here is coded in 

ALGOL W for the IBM 560/67 at Stanford University.   The calculations 

were carried out using long precision (lU hexadecimal digits). 

A FORTRAN version of the program has been developed at the Australian 

National University. 
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III.    Barrier and Penalty Function Methods 
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1.      Basic properties of barrier functions. 

Consider the inequality constrained problem (ICP) 

min f(x) 

subject to   gAx) >0 ,    i = 1,2, ...,m   (iclj  , 

where we assume (as before) that    f-, g   ,    iel   , are in   C    .    We also 

assume that    S = (x ; g.(x)  > 0 ,  iel-,}    is compact, has a nonvoid interior 

S    ,  and satisfies the regularity condition that every neighborhood of points 

of    S    contains points of   S-    (this precludes   S    having 'whiskers1).    If 

xrS    and   G.(X)   = 0   for some    i    then it is assumed that    x/S„   . i ~ ~r 0 

Definition;      0(g(x))    is a barrier function for   S    if the following 

conditions are satisfied. 

p 
(i)        0 > 0 ,    xeS .    If   X   closed set,    X c S0 , then   0 € C      on   X . 

(ii)       0 -• >     gi -»0 ,    ie^ . 

(iii)    *<•*-  < 0    if   g. < o.    whtre the  p. ,   iel. ,  are fixed positive constants. v      '    og. c>i     Ki Ki'        1 ' ^ 

(iv)       Ij^-j    bounded on   N(x,6)     if    gi > 0    on   N(x,6)   . 

e 
m 

Example;      (i)    0 = J^     l/ßi(
x)      (inverse barrier function). 

i=l 

m 
(ii)    0 =   £ (log(l+g (x)) -log g (x)) 

i=l 

Remark:      In the second example the term with argument    1+ g.(x)    merely 

ensures that the positivity condition is satisfied.    It could be 

replaced by a bound   k.    for    log(l+g.(x))    on   S    if this is known.    In 
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practice it is of no consequence. The barrier function 

m 
0 = T* (k. -log g.(x)) is called the log barrier function. 

i=l i     1 ~ 

Definition;  T(x,r) is a barrier objective function if 

T(x,r) =f(x) + r0(g(x)) (1.1) 

where r > 0 . 

Lemma 1.1; 3 x = x(r) e Sn such that T(x(r),r) = min T(x,r) . 
""      ~  ~    u ~      xeS  ~ 

Proof;  T(x,r) is bounded belo*/ on S , and T(x,r) -» + • as x -. öS . 

a 

Lenina 1.2;  Let {r,} iO , and let x(r.) = x . Then 

(i)   [T(x ,r.)} is strictly decreasing, 
~J  d 

(ii)  [f(x )} is nonincreasing, and 

(iii) {0(x.)] is nondecreasing. 

Proof;  Let r. < r. then 
X    J 

< fCx^ + r^gCXj)) , 

< fCx^ + r^gC^)) . 

This demonstrates (1). Subtracting the inside and outside inequalities 

gives 

(rj-r^g^)) ^(rj-r^CgUj)) 

8o 

•J 

:> 

i—~*—-"  . . _ 
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which gives (ii).   From the first inequality we have 

KtixJ    .     D 

Remark;      If   T(x,r)    is strictly convex, then all inequalities are 

strict. 

Theoram 1.1;      The sequence    fT^x^r^}    converges, and 

lijn T(x ,r.)  = rain f(x)  . 
i-«)   ~      ^^       xeS 

Proof;      By Lemma 1.2,    fTCx.,^)}   is decreasing and bounded below and 

hence convergent.    Let   f   = min f(x)  , then 
xeS 

whence 

Ttx,^) > f(x) > f 

lim T(x,,r,) > f 
i -•     -1    1 

(1.2) 

Now let    e > 0   be given.    Choose   XCSQ    such that   f(x) -f   < e/2    (this 

is possible because of the regularity condition on   S ), and choose   ^ 

such that    ri0(g(x)) < e/2  •    Then 

min T(x,ri) < TCx,^) < f + e 

whence 

llJt» T(x ,r ) < f 
i-«     ~ 

. a (1.3) 

Corollary 1.1;    The limit points of    [xj    are local minima of the TCP. 
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Remark;     The generality of these results should be noted.   For example, 

we have not required   S   to be Lagrange regular at the Units points 

of    (x^  . 

Definition;     Q(x,r)    is a separable barrier objective function if 

Q(x,r) = f(x)+ 2  ^.(g^x)) = f(x) + rT0(x) (lA) 

where   r > 0 , and   0.    is a barrier function for   Si = (x ; g^x) > 0} , 

i = 1>2, • • »jin • 

The previous results are readily extended to this case and are 

summarized in the following theorem. 

Theorem 1.2;      Let    r. > r..., ,    i = 1,2,... , and     11m r. = 0 .    Then 

(i)       min Q(x,r.)    is attained for some   x. c S    , 
xcS     - "^ "^     0 

(ii)      te(V]0}    is strictly decreasing,    WO}   is nonincreasing, and 

(iii)    lim Q^O  = f* » and the limit points of    [x^] are local 
k 
minima of the TCP. 

Remark;     Given a sequence of positive vectors tending to zero then it 

is possible to select a subsequence which is strictly decreasing. 

Conclusions (i) and (iii) remain valid in this more general case. 
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2.     Multiplier relations (first order analysis) 

In this section we assume sequences    {r.} i 0 ,    {x. } -» x    .   The 

condition that   T(x,rk)    is stationary at   r.     gives 

VTCXj^)   = vfC^) + ^ rk ^ 78^) 

m -     k = vti^) - f uj Vg^)  » 0 (2.1) 

where   ui = " r
k ^- (8^))  •   Nofce tbat   ui " 0(r^ ^ 0 '    k -• ' 

if   i / B0 ,  and   u^ > 0   for   i e B0   and   ^ > k     hy the conditions 

defining barrier functions.   Equation (2.1) is formally similar to the 

multiplier relations given earlier (MP(3.2)), and it is comparatively 

straightforward to deduce these relations from (2.1) in certain special 

cases.   We assume that   B. - {1,2, ...,t} , that the rank of the system 

of vectors   7g.(x )  ,    ieB,.   is   s <t , and that   7g,(x ),...,7g(x ) 

are linearly independent.   We define matrices   (Mx) , C2(x)    by 

'C1(C1)  = ^(x)1 ,    i = 1, ,...,s , and   K^C^ - Vg^x) , 

i = 1,2, ...,t-s ,  and vectors   u^^T « ^,...,uj} ,    u^1 . (u^.1--«Ug}  • 

Lemma 2.1;      If    (u }    is bounded then the Kuhn-Tucker conditions hold 
* 

at   x    . 

Proof:      Fran (2.1) we have 

7f (!hc)T = Ci(!5k)!tik) + ^b)*^ + 0(rk)    • (2-2) 

The linear dependence of the set of vectors   7g1(x ) ,    ICBQ , gives 
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C2(x )  = C^x )R (2.5) 

so that (2.2) can be written 

7f(x/ = C^x^) Cu[k> + Ru(k)} + {^(XJP -C1(xk)R>u^k) + 0(rk)  .       (2.U) 

Provided k is large enough the rank of C:L(x.) will he s (see 

MP Remark following Lemma 3*3)»   Thus 

üik) + Bi2k) = tcÄ)\(ifk>5'^i^)TWi)T+(c2(St
)-ci(5t>R5u^) + o(rk)} 

(2.5) 

(k) As   uA       hounded we conclude from (2.5) 

(k) (i)     u^      hounded, and 

(ii)    lljn   u^k) + Ru(k)  - [C1(x*)TC1(x*)}-:iC1(x*)T7f(x*)   . 
k -•• ~ ~ " ~ 

A8    lui   } >  (u2    }   are bouncl«^ wd nonnegative (at least for   k   large 

enough) this property is shared hy the limit points of the sequences. 

Consider subsequences tending to   u. , u«   respectively.    From (2.2) 

we have 

7f(x*)T - C1(x*)u* + C2(x*)u* 

or 

7f(x*) -   E   ui ^(x*)    . (2.6) 
- iCB0 

Thus the Kuhn-Tucker conditions are satisfied.   Q 

« 
Corollary 2.1;      If the Kuhn-Tucker conditions do not hold at   x   , 

k k then   fu.} ,  {vu)    are unbounded. 

8^ 
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Corollary 2.2;      If restraint conclition A holds then the   VgAx. ) 
I» 

are linearly independent for   ieBn .   In this case    {u0}    is null, 
k and   [u }   converges.    If restraint condition A holds then the multipliers 

in the Kuhn-Tucker conditions are uniquely determined. 

Lemma 2.2;      If restraint condition B holds then    {u^ ^}    is bounded. 

Remark;     By MP   Lemma 5.2, this implies that    {u^ ^}   is bounded for the 

convex programming problem provided   S   has an interior. 

Proof:     If restraint condition B holds then 3 d   such that   7g. (x )d > 0 , 

i = 1,2, ..^t .    From (2.2) ve have 

t 
i=l 

»i VgjC^d • Vf^d+O^) (2.7) 

As   7g1(x)d   is a continuous function, ve must have   u. > 0   and 

7g1(xk)d >0 ,    i • 1,2, ...,t , provided   k   large enough.   Thus (2.7) 

gives 

f  uk   ^   *f^+0^ (2.8) 

This relation shows that the u  are bounded as k -• • .   D 

Remark; The results of the first section shoved that convergence of 

barrier function algorithms can be proved under very fev assumptions. 

The results of this section show that valuable structural infoimation 

on the problem is available as a by-product of the conputation.   Note 
v 

that the condition that the   u.   be bounded is a veaker restraint condition 

than either A or B. 
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5.      Second order conditions. 

Consider now a barrier function   0   and a sequence    (r.) i 0   such 

that    {x. } -♦ x   ,    {u. } -» u    .    It is convenient to assume the following 

properties which are satisfied by all barrier functions of practical 

interest. 
o 

1 og^ 

(11)      rk     2 W -, + BB  *    k -• ,    leB0 .  (But see Example U(ii) p. 100 
6i for qualification.) 

Lenana ?.l;     If the matrices   VT^x-jr.)    are positive definite for 

k > 11   and the   7g1(x ) ,    ICBQ , are linearly independent then 

vT7   l(x*,u*)v > 0 ,    Yv ^ 0    such that   7g1(x )v « 0 ,    VI e B0 . 

Proof;     Differentiating   T(x,r.)    gives 

which can be written 

2 

^^rk) -^5cük)+cÄ>Dkci(;k)T% TtR 
rkM^i^V^) i€l1-B0        dg1 

where 

u 
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Left 

Pk = ^^^l^) 
(5.2) 

then, for arbitrary nonzero   v   such that    (I-P.)v ^ 9 

0 < vT(l - Pk)^(^rk) (I - Pk)v 

= vT(l - PJP^K^,^) (I r Pk)v+ o(l) 

as 

The desired result follows from this on letting   k -♦ • .   G 

Corollary 5.1:     If in addition to the conditions of Lenma 5.1 we have 

also strict ccraplementarity then the second order sufficiency conditions 

(the conditions of MP Lemma U.J) hold at   x   . 

Remark;     The problan of generalizing this result to the case where the 

active constraint gradients are not linearly independent is the following. 

In general, when   k < • ,    ranklC^x^ ^(x^ ] > s .    Thus 

Vk = ^ ; 76i(^- = 0 , Vi c B0} c Uk - W ; v - (I - Pk)u , u€En} . 

We have 

llm   Uk - V    ' [v; vs^ix )v - 0 , Yi £ BQ) 
In — 

It is not difficult to construct examples in which     11m Vk c V   . 

Consider   C^j^)  - ^ ,    Cg^) - t^+e^x-x )e2 .    Then 
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V.   = [v ; e^ v  = ej v  = 0}    =    lim V.   c  V* = (v j e^ v  = 0}   .    The 

argument of Lemma 3.1 shows only that   v 7 X(x ,u )v > 0    for 

v € lim V.   . 

Lemma 3.2;     Let 

W = U+7VVr    , 

N = tt ;||tl| = 1,/t =0}    , 

M= (uj||u|| = l^eN1}    , 

v=mintTut>0   ,    a= min u U u   ,    n « min jlvüll > 0   , 
tcN ~     ~ ucM ~      ~ ueM     ~ 

Tl =       min     t  Uu    ,     p = min(0,TO 
t€N , ueM ~      ~ 

then   W   is positive definite provided 

7   >   Q  ^V^gV      . (5.3) 

Proof;  Any unit vector w can be written 

a u + ßt  where ucM , teN , and or + ß »1 

Thus 

/ww « a2uTUu+2ClpuTUt +ß2tT Ut+TQ^Il/uJI2 

> (^(a + 7ii2 - v) + 2|a|(l -a2)1^* v 

>0?{a + yp2 - v) + 2|a|p+v (5.M 
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3 

• 

as    p <0 .   Provided   7 > ^^     (a weaker condition than (3.5))» the 
V- 

right hand side has a minimum at a = ^=  > 0 . The value at 
0+7^ -v 

2 
this minimum is   ^ + v  which is positive if (5.5) holds. D 

0+7^   -v 

Corollary 5.2:    If   W=U+VDVI   where   D   diagonal, and if the 

conditions of Lemma 5.2 hold, then   W   is positive definite provided 
2     2 

min D.. > *—^   "  v    .     If   D   is positive definite the result holds 
i vy, 

provided the smallest eigenvalue of   D   satisfies this inequality. 

Proof;     We have 

wT VD /w = O^u1 VD V1 u 'C?' llh,w^n 

> min D.. C^W^MW2    . 
i     11 - 

The result now follows as fron equation (5.^) above.  Q 

Lanma 5.5;  If the second order sufficiency conditions hold at x 

then 7T(xk,rk) is positive definite for k large enough. 

Proof;  We have 

V   cU   = (v ;7g-(x )v ■ 0   ,    ticB     such that   u. > 0}    . 

Thus the second order sufficiency conditions imply that 

vT7 X(x ,u )v > 0 ,    Yvc V     such that   y /t 0 .   From rorollary 5.2 

it follows that 3 D0   such that   V2t(x*,u*) ♦ ^^^(x*) |C2(x*) lD[C1(x*) |C2(x*) ]T 
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is positive definite for   D > D-  .    By continuity this implies that the 

corresponding matrix evaluated at   x.    is positive definite for   k   large 

enough.    The desired result follows from this as    (Dv)..*  -• • * 

i = 1,2, ...,t   as    k -» • .   G 

Lemma 3.k:      If   U    is nonsingular,    D   diagonal, and   V   of full rank, 

then the system of linear equations 

[U + VD/JX = vy (5.5) 

has the solution 

x =U"1V(l + M)"1My (3.6) 

where   M = (V1!!     V)"T)       provided   I+M    is nonsingular.    A sufficient 

condition for   I+M   nonsingular is    ||M|| <1   which is satisfied if 

min   |u..|    is large enough, 
i 

Proof;      The result follows on substituting (5.6) into (3.5)»   Ü 

Remark;      From (5.6) it followB that 

x   ~   u"1V(v:ru-1V)"1D'1y (5.7) 

as    rain   |D.. | - • . 
i        1X 

Corollary 5.5;      If the right hand side of equation (5.5)  is    z , 

a general vector, then the solution is given by 

x = U"1V(I + M)":1>I(VTU"1V)"1VXU'12 

+ u"1(i-v(v;ru*1v)'1vTu":L)z    . (5.8) 
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k.     Rate of convergence resailts. 

In this section, rate of convergence estimates for barrier function 

algorithms are considered.    Unless stated otherwise the conditions 

imposed in Section 3 are assumed, together with the condition that 

llvg^x^H/O,    i€B0 . 

Lemma h.l:     Provided    {u }    is bounded then 

*II2 
+ 0(n1aX{llxk-xr,rk||xk-x||}) (lf.l) 

Proof;  The result follows by taking the scalar product of (2.2) with 

x, - x  and identifying with terms in the Taylor series expansion. D 

Definition;  We say that u.  is SO(v.) (strict order v, ) provided 

(i) \  = 0(vk) , and 

(ii)    3 1^ < •   and   p, > 0    such that    k | > ^|v, |    for    k > It.  . 

Remark;      (lul) gives an error estimate provided the remainder terra is 

small.    A sufficient condition for this is 

f^-fOc*)  =SO(|lxk-x*||)     . (U.2) 

This implies that for at least one 1 ,  ui S*^) = ^(ll3^ "x II) • 

If (^.2) does not hold then for i = 1,2, ...,t either 

(1)  u -• 0 , k -♦ «B , or 

(ii) S^Xj,) =0(11^-^*11) • 
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If (ii) holds then the approach of   x.    to   x     is tangential to the 
■x- _—* 

siirface    g.(x) =0    at    x = x    . 

Lemma ^.2;  If the ICP is convex, then 

(i)  ^^ ^ are d:ual feasible, and 

(ü) fc^-ftx') < Y. *U±i\) • i__l 

Proof;      The dual feasibility is a consequence of (2.1) and assumption 

(i)  of Section 3.    This follows directly from Wolfe's fonn of the duality 

theorem (MP   Corollary 5*1) •    We have 

^VV = ^ - t ui ^^ $ x(x^u#) = f(x*) ^ ^h)     (^5) 
~    ~ ~        i=l ~ ~   ~ 

which demonstrates the second part of the desired result.   □ 

Example;      For   icB-    let    S-i\)  = S0(||XL -x |l)  ,    u.  > 0  . 

(a)     inverse barrier function.    We have 

Ui ^k/^^ 

whence 

(x.) =^/r~^uf     • eiv~"V   "*k'    i 

This gives 

H^-xl  =0(rV2)     . 

(b)     log barrier functions.    In this case 

u.   = r, / g.(x. ) 
i       k' &i ^k' 

which gives 
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and 

h^ = rk/ui 

115,-xl =0(rk) 

Thus the strict order condition peiroits us to deduce a rate of convergence 

result.   We now show that the   SO    condition is equivalent to the 

condition of strict complementarity for the inverse and log barrier 

functions.    In these cases the remark following Lemma h,l gives us a 

geometric interpretation of strict complementarity. 

To discuss this equivalence, consider the following system of 

equations which define   x^   and   u.     as functions of   r.   . 

m    . 

^-^WbJ =0 ' 1=1 

and 

ui/|^^ =-rk   '    i=l>2,...,m . (^) 

If the Jacobian   H(x,u)    of this system with respect to   x , u    or an 

appropriate transform of it is nonsingular then we can study the behavior 

of   x(r) , u(r)    as a function of   r   by integrating the system of 

differential equations 

H(x,u) 

dx —     " 

dr 
0 

du 

_ dr _ e 
u. "    - 

(^.5) 

where    e   = [1,1, ...,1} .    We have 
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H(x,u)   = 

p 
7   X(x,u) 

™—2    72 7gi^) m ög 

_m      o_^ 

C Kf* 
Vgm^) 

7ß.(x)T... 7^(x)- 

yt 

% 

ik.S) 

Let    D    be the diagonal matrix 

where 

D = 

w m 

■■ ■ Wi 

(^•7) 

(4.8) 

then 

DH = 

7 x(x,u)     - tfe-^x) 

uiygi^^ 

L V^m^) 

" ^(^ 
T 

(M) 

9U 
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Provided     -ß- /^-|   - 0  ,    k -. • ,    leB-     then   DH   will be non- ^V  *£ 0 

4. 
singular for   k   large enough provided   J(x )    is nonsingular (see MP 

Lemma h.h).    This implies 

(i)        the second order sufficiency conditions hold, 

(ii)      the active constraint gradients are linearly independent,  and 

(iii)    strict complementarity holds. 

In this case 

DH 

-         - 
dx - 

dr 
0 

du 

dr 
w 

u " - 

(^.10) 

whence 

x,   - x ~k 

u    - u 
=   "J      (DH) 

0 '[:] dr 

provided the components of   w   are integrable. 

Example:      (i)    inverse barrier function. 

We have 

V^ = "2  '  W/ög? = 2gi 

(U.n) 

In particular, it follows that DH(x.) is nonsingular for k large enough, 

while -w. = TT vuT/r . We have 
1  2  i' 
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ox 

dr 

du =    2r^ 
(DK)"1 

0 

dr 
• • • 

■ 

1/2 
whence, changing to r '  as independent variable, 

(U.32) 

dx 

du 
= (DH)-1 

0 

u 

m 

(U.15) 

Thus we have 

x(r) -x 

u(r) -u 

= rVVCx*)]"1 
0 

NG* 
+ oCr^2) .    (U.ll^) 

(ii) loß barrier function. In this case 

=   1 

so that (^.10) becomes 

" dx  " 

dr 
=   J"1 

" 0 

du 

_ dr . 
e 

(^•15) 
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In particular, x(r) , u(r) inherit the differentiability properties of 

f and g   ,    i = 1, ...,m for r small enough (if ^geC1* then 

x,ueCP" ). Thus 

x(r) -x 

u(r) - u -■■-[:] + 0(r2) (1^.16) 

Remark;     These results can also be derived by differentiating (2.1) with 

respect to   r .    We obtain 

^(rhr)^   =   -  l   ^-7gi(x(r))T    . 
i=l ^i 

(U.I?) 

In this case   Lemma 3.5 guarantees that   7T(x(r),r)    is positive 

definite for   r    small enough, and Corollary 3.5 can be used to give 
du 

the solution to (^.17).   Note that (^.l?) results if   ■—   is eliminated 

fron {h.2D). 

We can now proceed to the main result. 

Theorem ^4.1;  Provided j(x ) is nonsingular, then the strict 

complementarity and strict order conditions are equivalent for the 

inverse and log barrier functions. 

i   i 

Proof;     The argument is essentially the same for both barrier functions, 

but is simplest for the log function.    Thus only this case is considered 

here. 

For the log penalty function   u   = r-J&AxJ)    so ^at 
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f(xk)-f(/)=   E   i^ry^x,)* od^-/«) 
icB0    üiv-ky 

=  tr^odj^-xjl)     . (U.18) 

If strict ccmplementarity does not hold then for at least one   ieB» 

r
k 

11m     —T—v    =   0    . 
k-»09 g ?5? 

^   gi(5c'  ''si(i "iht'Ü'*0'"5i'!5 I"    iS   00lat-i ID    at most,  It 

follows that    r,   = o(|jx   -x ||)    and hence,  from (^.18), that 

f(x ) - f(x )  = o(j|xk-x !|)  .   Thus the   SO    condition does not hold. 

If strict complementarity does hold then asymptotically for small   r 

||7g(x')l|  ||x(r)-x| 
,   f  •>-,>    -  v      >   o   ,    ieB-  . *,i -   R.fxfrl) i ' 0 ^ i^xMT - ui 

Thus    r = 0(l|x(r) -x jj)   .    As    j(x )    is nonsingular {h.l6) holds and this 

implies  (as    r = 0(||x(r) -x ||))    that 

||x(r) -x*l|    <   Kr + 0(r2) 

for some    K > 0  .    This shows that    r = S0(||x(r) -x ||)    so that, by (U.lB); 

the strict order condition is satisfied.   D 

Remark;     The above argument shows that if strict complementarity does 

not hold then the strict order condition cannot.    The condition that 

J(x )    be nonsingular is required only for the second part of the theorem. 
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Example;      (i)        minimize   x^Xg 

o 
subject to   -x:+ x2 > 0 ,    x1 > 0 

Figure ^.1 

From Figure U.l it is clear that the mlnimm is    f = 0   at   x1 = x2 = 0 , 

and that strict complementarity holds. 

(a)    inverse barrier function 

= 0 = l+r 

lr- = 0 = 1+r 
\i*2-*l) 
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This gives a pair of equations for    x      aiid    x^    as functiom 

of   v  .    We have 

x1 = r^-r+OCr5/2)    , 

x2 = r1/2+r+0(r5/2)    . 

(b)    log barrier function 

T = x1+ x2 - r{log (x2 - x^ + log x1} 

dx1 

-2x 
= 0 = l-r< 

1   +   1 

2     x, x2 - x;L       1 

Solving for    x      and    x     as functions of    r    gives 

x    = r -2r2+0(r5)    , 

2 7' 
x    = r + r  +0(r^)     . 

(ii) minimize    x. 

subject to    x? - x1  > 0    ,    ^ > 0    • 

In this case the minimurii is again   f = 0    at    x..   = Xp = 0 .    However, 

T T 7f(0) = Cp    is orthogonal to   7g2(0) = e,   .    Thus, as both constraints 

are active at zero,  strict complementarity does not hold.    Note that 

the constraint    gp = x,  > 0    is redundant,  and that the barrier function 

trajectory is tangential to the constraint surface    g,  = 0 .   Note also 

that the rate of convergence is reduced,  and that    r,   —^   does not 
k ög2 

tend to   oo   for the constraint with the zero multiplier. 
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(a)    inverse barrier function. 

ar 

1     1^-4)  4; 

= 0 = l+r 

whence 

x^Cr/^   ,   u,-!   ,    r^-^ 
ög1     r 

x2 = 3r/2   ,    u2 = (Ur)1/5   ,    r ^| = U    . 

(b)    log barrier function. 

T = x2 - r[log(x2 - x^ + log x1} 

0 = -. -r 

ar 0 = = 1- J 1 
^- lX2-Xl 

whence 

Xl = (r/2)V*    ,    u1 = x   ,    r4 = i 
äg 

= 3r/2   ,   u   . (ar)1/2   ,   r ^ f = a 
a4 
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(iii) minimize    -x. 

subject to    (1-xJ   -Xg^O,    Xg > 0    . 

This is the example used in MP   Section 5 (see Figure 5.1) •    The 

optimum is    f = -1    at    x.  = 1    ,    x   = 0 .    The Kuhn Tucker conditions 

do not hold at this point. 

(a)    inverse barrier function 

T = -x 

5x7 

1 ^(l-X^-Xg X2j 

3(1-x1)2     "1 
= 0 = -l+r< 

ÖT   = 0 / 1 ll ^"   ^^d-x/.x/'x^y 

whence 

X2 , 2V2 ^A r5A    . 

In this case     u1(r)  = u2(r)  = ^ JTC 

(b)    log barrier function. 

T = ^ - rflog( (1 - x^^ - x2) + log x23 

ST D     0      1   J'Hl'xl)2 \ 
i = 0 = "1'r\(i-x1)5.x2/ 
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x1 = 1 - 6r   , 

x2 = lOSr5    . 

In this case   u, (r)  =u„(r) =- ^ 
108r 

The above examples confirm the predicticns of our analysis, and for 

a given fixed sequence of   r.     values effective convergence is attained 

more rapidly (i.e., for earlier members of the sequence) with the log 

barrier function. 

Now let   0   be a barrier function.   Then 

^ = log(a + 0)    ,    a >l {h.19) 

is a barrier function.    Let    x,    minimize   f+r^,    x^   minimize 

f+rji,  .   Then comparing corresponding Lagrange multiplier estimates 

gives 

-i > rk-0 

whence 

^(^-C^^O as   r^ -* 0 

Essentially this says that    g^^) - 0   more rapidly than    g1(xk) » so 

that a faster rate of convergence is anticipated for the   0.    barrier 

function. 
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by 

Consider now the sequence of barrier functions defined recursively 

<(1) = 0 ^ =log(k -log(g (x)) , 

^(^ =log(a + 0(
i-1)) , i = 2,3,..., a>l. 

l(i) E 0 ^ • (Iu20) 

J=l 

In this case the error estimate is 

ftx^-fCx*) 
i-1 

= -r 
t ^•i) i      rk -r     i 

(1+.21) 

The right hand side of (^.21) tends to zero as    i -• • ,  and this suggests 

that increasingly rapid rates of convergence can be obtained by using 

barrier functions associated with large values of   i . 

However, an even more interesting result is possible.    This shows 

that in certain circumstances it is possible to choose a barrier function 

having the property that the solution to the ICP is approximated 

arbitrarily closely by the result of a single unconstrained minimization, 

without requiring   r   to be taken arbitrarily small.    Let 

T(i)(x,r)  =f(x) + r   f   0(.i)(g1(x))    ,      and 

m 
Q(x,\)  = f(x) + J]   \ (k   -log(g (x)))     . 

J=l dv J 

lOU 
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Theorem ^.2;     Let   Q(x,X)    have a unique stationary value (necessarily 

a miniraum) in   S0   for each   \ >0 , and let   x^ '   minimize   T^ '(x,r) 

for    i = 1,2,...    «md fixed   r .   Then the limit points of    {x^  '} 

are local minima of the TCP. 

Remark;     Note that    r    does not have to be small in this result. 

Proof:      If   x^    minimizes    T^ '(x,r)   then 

7f(x^)-r   £    1      i±K        ^    m 1  " m W^i^ 

* 0   , (^.22) 

and this expression has the form 

VQ(x(i),\(i))   = 0 (1^.23) 

where M1' has the numerical value 

, .x i-1 , 
\\     = —rn— TT —-T7\ nrr '  j=i,2,...,m . 

J kj -10g(gj(x
(i)))      S=2     (T + ^Cg^X^O) 

(1^.21+) 

Thus the    {x^1'}   also correspond to a sequence minimizing   Q(x,\^ ')   by 

the assumed uniqueness of these stationary values.   Now, as   a > 1 , 

fiv' > 0 ,    s = 1,2, ...,i-l ,    K\ '    can be made arbitrarily small for 

each    j    by choosing   i    large enough.   The desired result is thus a 

consequence of the remark following Theorem 1.2.   G 
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Remark; The conditions of the theorem are satisfied if f(x) convex, 

gi(x) , i = 1,2, ...,m concave, and strict convexity / concavity holds 

for at least one of these functions. 

In what follows it is convenient to use the superscript    i   to 

indicate the appropriate member of the log barrier function sequence 

(U.20). 

Lemma U.3: 

where 

and 

U-.^+g,^<,^ . 
■j       "j ~j   ögj 'i 

(i)      i py -i   ,   gj -* o   . 

(^.25) 

(1+.26) 

(^.27) 

Proof:      Let \(0)  _ -log g     then 

^_0) 

^ 

(0) 1_ (U.28) 

so that    p^ ' = 1 . 

gives 

^ 

Now, differentiating the relation 

(U.29) 

106 

ii'iBiitiiririMiiiBMiiaiilfalttlit'tiMiiifiiiifiiiiiii iiii i-iiiini     ... 



Bww7'WWWWBWffTipWWiW*1l'r ".•w y ""rvr'-v-^rji? v •»T""1",""-"l,l.,V 

so that 

MMMHi 

a2^i+1) /^j  ^  ,^i+ ^ 
06^ 

(i+l)        ^(i)     /^(i) 
"Si ^ ag 

■■*(• 

^ + g 

) 

This demonstrates (^.25) and (^.26),   {k.2rf) follows on noting that 

pj0) = 1 ,  and that, from (^.29), 

(i) 
g    ^G    -   0    ,    g.  -0    ,     i = 1,2,...       .   G 

d    «gj 0 

A consequence of this lemma is that, provided   J(x )    nonsingular, 

then   D^V1^    is nonsingular for   x(r)    sufficiently close to   x    . 

Lemma h.k:      Let   J(x )    be nonsingular,  and   I1 = B0 , then the   SO 

condition is satisfied. 

Proof:     We have fron (I+.29) that 

,2 

w (i)  _ (i) 

J 

t$U 
ög '1 <(i) 

6 'J 

(1^.31) 

so that   w^.1^  -«0   as   r -«0    for   jeB^ .    Now 
0 0 

bi~t 

\ 'I 
[D^V1)^)]-1 

0 

(i) 
• 
• 

.   m 'Sn . 

+ smaller terms 
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where    P^1^    is diagonal, and   P^' = l/pj1^ - 1 , 

j = 1,2,.,,tm .   This result implies that for   k   large enough 

•JJ    --"J       -'    rk^0' 

1|
Vü*II ^ K^ ujk«j^ • JeB, 

The   SO    condition is an immediate consequence of this inequality,   D 

Remark:      If   B0 c I,    then   w^ '    need not tend to zero for    j/B0 . 

Thus eventually the largest components of   >r '   will be those associated 

with the inactive constraints.    This implies that    ||x. -x j| = 0(r, )   . 

But    g. ,    jcB- , is   o(r,)    which suggests that, in general, the    SO 
,1 u ic 

condition does not apply.    This case should be contrasted with the log 

and inverse cases where the contributions of the inactive constraints 

do not dominate in   w   (in the inverse case the active constraints 

dominate).    We note that the   SO   condition is only sufficient for (^.l) 

to provide an error estimate and numerical experience indicates that it 

is applicable in the calculations with the log sequence.    However, the 

above discussion suggests that to attain the maximum rate of convergence 

with the members of the log sequence, the inactive constraints should be 

identified and dir-carded.   A possible way to do this automatically is by 

the use of a separable barrier objective function 

m 

^*'h} =fW+rk  ^   ui     ^gi^ (U.52) 

k-1 k-1 where   p   = r,   u      ,    r,     is the usual barrier parameter, and   u is 

the multiplier estimate obtained from the previous minimization.    This 

objective function has the property of forcing the multiplier estimates 
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for the inactive constraints to zero at a very fast rate.    We have 

12? J   :   ~r'vlUi  ^-(W 
k+1 
i *k+l"i   c^g i 

s^As-^rft^i <^ 
where    p.     is a bound for   4^- (x.)  ,    k = 1,2, ...  . 

JU 

This choice can also be favorable in the case of nonstrict comple- 

mentarity.    Consider the previous example 

2 
min x      subject to    x   - x    > 0 ,    x-i> 0    . 

Set    Q = x2-r2(log(x2-x1)+uk_1 log x^^}  .    Then   7Q = 0    gives 

X2-Xl=rk   '    ^l^kVl     ' 

so that 

Vk,! = 2l/2    1/2     1/2     . 
k x1 k        k-1 

-k / ^k Setting   r,   = Q;     ,    u /2 = cc       reduces this to 

0       1 c k 
ßk - 2 ßk-l " 2 

The solution to this difference equation satisfying the initial 

condition    ßn = 0    is 

ßk = -k + (l-(|)k)     . 

From this it follows that u = 0(r.) , and hence that x^. = 0(r ) . 

Thus, for this example, we are able to obtain results as favorable as 

those in which strict complementarity holds. 

Example. Show that the error estimate (U.l) is valid in this case. 
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There is a penalty to pay for the generality of the barrier 

function algorithms, and this is a significant burden of calculation 

associated with each of the successive unconstrained minimizations. 

This can be explained (at least in part) by looking at the Hessian of 

the barrier objective function.    Experience (in part supported by 

theoretical results) indicates that the condition number of the Hessian 

ia a good indicator of the degree of difficulty of an unconstrained 

optimization problem when it is solved by descent methods. 

On the assumptions that the second order sufficiency conditions 

hold at   x   ,  and that the active constraint gradients are linearly 

independent, then it is possible to deduce fairly complete information 

on the eigenvalues and eigenvectors of   7 T(x.,r.)    from (5«8). 

(i)      There are   n-t   eigenvectors associated with eigenvalues of 

7 T(x ,r,)    that are   0(1)    as    r,   -♦ 0 .    The smallest eigenvalue tends 

to 

v 7 X(x ,u )v # 
m = rain 1—a—-   ,    Vv   such that    7g.(x )v = 0   ,    Vi e B.    . 

V V   V ~ ^   ~ 

(ii)  There are t eigenvectors associated with eigenvalues of 

p 
7 T(x,, r,) which tend to • as r, -• 0 . These eigenvectors are 

asymptotic to vectors of the form C1(x )y. where y. are eigenvectors 

of the problem 

[C1(/)
TC1(x*) - ^Al^ = 0 

p / O 

where   A   is a diagonal matrix.    A.. =—^   / max      —5   ,    i = 1, ...,t 
11     Ög2 /i<j<t   Ög2 
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The corresponding eigenvalues tend to   •   like   u.r.      max       —^ 
l<J<t   ög^ 

u 
--   that is,  like   p.. —7—r     where   a   is the maximizing index. 1 scÄ; 

This shows that the condition number of   vT^x-^r. )    tends to   • 

like   l/sa(xk)    or like   l/jk -x H , if the   SO   condition is satisfied. 

In this latter case we have shown that our measure of the cost of a 

barrier function calculation depends in the main on the accuracy desired 

rather than on the choice of barrier functions.    However, our estimates 

for the log family indicate that these will be somewhat more expensive 

than the above estimate except when all constraints are active. 

Note that the device introduced to force more effective elimination 

of the inactive constraints does not force the Hessian to be worse 

conditioned in the case that strict complementarity does not obtain, at 

least in the examples that have been worked out.    The use of this 

device would appear to be an important improvanent in barrier function 

algorithms. 

5.      Analysis of penalty function methods. 

Consider now the equality constrained problem (BCP) 

min f(x)    ,     S = [x ;h.(x)  = 0, i = 1,2, ...,q (ielj}  .    (3.1) 
xeS      ~ ~      1 ~ ^ 

It is assumed that    S    is nonempty, and that (3.1) has a bounded minimum 

(say   f ). 

Ill 
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Remark;     The inequality constraint    g(x) > 0    can be written as the 

equality constraint 

h(x)  = min (0,g(x)) = 0 (5.2) 

„J 

so that formally the ICP is a special case of an BCP.    However   h(x) 

given by (5»2) can have discontinuous first derivatives. 

Definition;      F(x,\)    is a penalty objective function if 

F(x,\) = f(x) + \ V   fih^x )) (5.5) 

where   i|r(h)    is a monotonic increasing function of    |h | , and   \|r(0)  = 0 . 

Example;      Let    \|f(h)  =  |h|        then   \|f   is a penalty function if   cc > -1 , 

If   g(x)    is concave then, from (5.2), so is   h(x) ,  and   \|r(h)    is 

convex provided   a > 0  .    If   a < 0   then   TJ    is unbounded as   h - 0 . 

Theorem 5.1;      Let    fX.} t» , and   x     minimize   F(x,\ )  .   Then 

{f(x )}    nondecreasing,     {F(x ,\ )}    strictly increasing unless   x eS , 

and 

the BCP. 

(iw} nonincreasing.    If    {x } -• x     then   x     solves 

Proof;      Let    \    < \    .    Then, provided   x ,x„ ^S ,   r       s ~r „.s 

F(V^)   < F(X
S^r)   < F(X

a^S)   < F(V\) jr   r „s' r'        v~s'  s' ~r' s' 

Thus (compare Lemma 1.2) the results for the sequences follow us before. 

We have 

min F(x,\) < min F(x,\) = min f(x) = f    . (5.1+) 
x       ~ xcS     ~ xeS 
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Thus the F(x ,\ ) are bcoonded, and hence x eS . Now 

x cS =» f(x ) > f , 

but, by (5.1+), 

so that 

f(xr) < F(xrAr) < f 

lim f(x ) < f . 

Thus   f (x )  = f , and   x      solves the BCP.   D 

Remark;      In the more general case in which    fx )    is bounded it follows, 

by restricting attention to convergent subsequences, that all limit 

points of    {x }    solve the ECP. 

Theorem 5.2;      Let    fx } -» x     and assume   y{h.)    continuously differentlable, 

and   7h.(x ) ,    iel0 , linearly independent.    Define   u     by 

ui " ' Xr ^J sgn(hi)    '    ± = 1'2>"'><i. (5-5) 

then {u } - u , the vector of Lagrange multipliers for the ECP. 

T 
Proof:  Define the matrix B(x ) by /c.(B(x)) =7h. (X) , 

i =1,2, ...,q . The condition that x  minimize F(x,\ ) gives 

0 = 7F(xr,\r) = 7f(xr) +\r V    ^y sgn(hi)7hi(xr)       (5.6) 

so that 

7f(xr)
T = B{XT)^    . (5.7) 
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Now   B(x )    has full rank for   ||x  -x ||    small enotigh.    Thus 

ur = (B(>:r)T B(xr))-
1 B(xr)T 7f(xr)T •«.i 

- (B(x*)T BCx*))"1 E(X*)
T
 7f(x*)T = u*    .   D (5.8) 

Remark:      (i)    If strict complementarity holds so that    |u. | > 0 , 

i = 1,2, ...,q , then the convergence of the Lagrange multiplier estimates 

implies (from (5'5)) that    sgn(h.)    is constant for    i   large enough as 

v  V    > 0 ,    xeS .    Thus the minimizing sequence approaches   S 'from one 

side1.    In this sense    S   acts like a hairier. 

(ii)    Note that    h.(x)  = min(0,g. (x)) = 0    identically in a neighborhood 

of   x     if   g. (x ) > 0 .    Thus   7h (x )  = 0   so that, in this trivial 

sense, the constraint gradients are not linearly independent.   However, 

if strict ccmplementarity holds, then a multiplier result can be proved 

for the active constraints (do this I).    In fact, the strict complementarity 

restriction can be relaxed somewhat. 

Theorem ^.3;      If the conditions of Theorem 5'2 hold, and,  in addition. 

djt   _ {u  } -u    , and   \       2 
~r       ~ r dh^ 

• ,    i = 1,2,.. .,q , as    r -♦ « , then the 

second order sufficiency conditions hold at   x     if and only if 

7T^x ,\ )    is positive definite for   r   sufficiently large. 

Proof;     This is essentially the same as that of Lemmas 5.1 and 3.2.   D 

Example;     Derive the analogues of Lemmas 5.1 and 5*5 which apply when 

the BCP is obtained by transforming an ICP by means of (5'2). 

Ilk 
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Remark:  The condition that \ —^ - o» is related to strict 
dhi 

ccmplementarity.    Consider   \|f =  |h. |       ,    a > 0 .    Then 

(5.9) 

so that 

xr4 =  (l-^alh.r1 
r
 dh^ 

«Ki 
(5.10) 

d2 
Thus   X   ^-| - • ,    h. - 0      if    |u. I > 0 .    Strict cctrplonentarity 

is of particular importance for equality constraints derived from 

inequality constraints by (5.2).    In this case, the one sided convergence 

implied by the multiplier relations is needed if we are to be able to 

talk about second derivatives at all. 

The parallel development of the treatment of the BCP by penalty 

function methods and the treatment of the TCP by barrier functions can 

be completed by discussing convergence rates of penalty function algorithms 

in much the same way as we treated the barrier function case.    For example, 

multiplying (5.6) by   x   -x     gives 

*n2* f (x ) - f (xr)  =   V  uj h.y + 0(|lxr - x If)     . (5.11) 
i=i 

The assumption that the SO condition is satisfied can now be used to 

provide estimates. From (5.9) 

a (l + ^^lh.f sgn(hi) = - u* 

so that 
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(5.12) 

This sviggests a rate of convergence of   O^j—) '   ) , which contrasts 
r 

favorably with the estimates obtained for the barrier function algorithms. 

In particular as a-0, (5.12) suggests that the convergence rate 

becomes arbitrarily great. However, the results of the previous section 

also indicate that the condition number of the Hessian will become 

arbitrarily large as a -* 0 . The next result provides information on 

the limiting case a = 0 . 

Theorem 5.h:     In the IGP let f(x) be convex, and g.(x) , iel , 

concave. Let w be an infeasible point, x  an interior point of S , 

# ■* 

a = rain g.(x ) , b = f(x0) - f(x ) , and \Q =  (b+l)/a . Then x 
lcIl 

minimizes 

F(x,\) = f(x) -\ f min(0,gi(x)) (5.15) 
i^l 

provided ^ > \ 
Ö * 

Remeürk;      It is necessary to demonstrate the result only for   X. = \0 . 

For all larger   \    it is then a consequence of Theorem 5.1. 

Proof;      Let    v   be the boundary point of   S    on the join of   w   and   x    , 

and   B     be the index set of constraints active at   v  .    Define 

s(x)  = f(x) -\    Z    «iW    > 
ieB 

(5.1M 

then 
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^  =f(^-^o X  ^-o* icB 

< f(x0) - (b*-!) 

= f(x*)-l 

< f(v) = s(v) = F(v,X0) (5.15) 

As s(x) is convex and v is on the join of x  and w , 3 9, 

0 < 9 < 1 , such that 

s(v) = ös(x0) + (l-ö)s(w) 

< 9s(v) + (l-©)s(w) 

whence 

E(V) < s(w)  . (5.16) 

Now   s(w) <F(w,\ )    so that,  from (5.15) and (5.16) 

F(v,\0) < F(w>\0)       • 

Thus   min F(x,\ )    must be attained at a feasible point.   D 
x 

6.     Accelerated penalty and barrier methods. 

The problems of poor conditioning of the ccnrputational problem and 

(comparatively)  slow convergence make it worthwhile to search for methods 

for accelerating the convergence of the penalty / barrier function 

algorithms.   Consider the (generalized) penalty objective function 

»(x,W,T!)  = f(x)+ f  W^Oi^x) + T^) (6.1) 
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where   W    is the diagonal matrix of penalty parameters, and the   T|. 

are further parameters to be used in the acceleration process. 

At a minimum of   P ,    x(W,1))    satisfies 

q 
7f(x) - f  ui(W,1))7hi(x) = 0 (6.2) 

where   ui(W,Tl) = ~ Wii ^"    *    Provided   ||x(W,T0 -X*II    «"^ 

||u(W,t)) -u ||    are sufficiently small, the second order sufficiency 

conditions hold at    x   , and   Vh.Cx )  ,    iclp ,  are linearly independent, 

then (by Theorem 5.5)    x     also solves the EC? 

min    f(x)    ,    SL      = {x;h (x) = h (x(W,Tl))  >  i^Ip}    • 

/ x * One sequential strategy for making   x(W,Ty -♦ x      is to force 
M* «W **0 

\  = min W . t • . However, the parameter vector T\   is also available, 
i  11 

and we ask is it possible to adjust it to make 

h^xfoTO) = 0 , irl2 . (6.5) 

v c*x. 
Let    irr-   be the matrix with components   -rzr- ,    1 = 1, ...,n , 

j  = 1,2, ...,q .   If   v P(x(W,T\),W,iri)    is nonsingular, then, by the 

implicit function theorem, we can solve (6.2) for   x = x(T|)    holding 

W    fixed.      We have 

2"ri - -^n^i< ^ 7 P 

where all quantities are evaluated at    x(W,Tl)   •    Defining the diagonal 

o 

u 

. i 
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2 2 Vii = Wii H    =    Wii ^ '     i = 1'2—^ '   ^ the 

matrix   B   by   K.(B) = 7h. ,    i = 1,2, ...,q , then (6A) can be written 

matrix   V   by   v^ = w^ ^   =   *ii Sh^ 

(72X+BVBT) ^    =    - BV (6.5) 

2 T Choose   V-    to make   U = 7 X+BVQB     positive definite, and set 

vi = v"vo *   Then, by ^"^» if   min vii   is s11^101611*^ large 

^   ~   -U'1B(BTU"1B)"1+0(V"1)    . (6.6) 

This relation can be justified if 

(i)       the second order sufficiency conditions hold at   x     and   7hi(x) , 

irlp , are linearly independent, 

(ii)      ||x-x ||   and   l|u-u ||    are sufficiently small, 

(iii)   rain V.. -•   as   min W..  - •   for   I) = 9 , and 'ii ii 

(iv)     min W..    sufficiently large, 
i      11 

Consider now the use of Newton's method for solving (6.5). 

suggests that a correction   6^   to   T\   be found by solving 

This 

-u <& R«     TJT öx t_ . (6.7) 

But, by (6.6), 

,T äx 
3Ü 

B - I + 0(V'1) 

so that 

6T| = h+0(V    )     . 

(6.8) 

(6.9) 
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Thus we expect the sinrple correction   Bl) = h   to approximate arbitrarily 

closely to a second order process provided   V   is sufficiently large. 

Algorithm (BCP) 

(i)        Initialize   T/
1

^ , W^   . 

(ii)      Minimize   P(x,W^kSTl^kO    to determine    x,   , u,   . 

(iii)    IF     £   ui N^)  <'r0L    THEN STOP. 
i=l 

(iv) FOR 1=1 STEP 1 UNTIL Q DO 

IF A^C^Cx,))  <DBCR*ABS(h.(xk_1)) 

THEN    71? ^ = "Hi + hi^) 

ELSE   w!^   = EXP*wf^ 
ii ii 

(v) K := K+l. 
i 

(vi) GO TO (ii). -, 

Remark;      The idea behind the algorithm is that the correcticn  (6.9) 

is used whenever the convergence of    h.    to zero is satisfactory. ^ 

Otherwise it is assumed that   W..    is too small and it is increased 

accordingly.      Tj.    is modified at the same time to ensure that 

k        *■ / ä\lr v -1 öilf j u.  -.u.    as    h. -.0 .      (rf) '"   indicates the inverse function to   -g- . 

For the ICP we consider the modified barrier function 

R(x,W(k),T)(k))  = f(x) + f   W^ uj"1 ^(g.Cx) + if) (6.10) 
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where   u.   ^   is the vector of multiplier estimates fron the previous 
(Xr) 

minimization, and   VT '    is now the diagonal matrix of barrier parameters. 

We note that, in the particular case in which all constrcints are 

active, the previous analysis is applicable, at least formally, and 

suggests a correction 

5^) = ^(k) + g(    ) (6#11) 

with order of magnitude departure from a second order iteration of 

Off min W;.' u.'   —5  )      \ .   However, we require automatic selection ((T^SJ1)- 
of the active constraints if we are to make use of this result, and it 

is important to note that this is provided naturally in the algorithm 

by the options 

(i)      if   g. -• 0   at a satisfactory rate then   1\.     = \+&± * and 

(ii)    if the convergence rate is too slow, then decrease the barrier 

parameter. 

This second option can be expected to apply to the inactive constraints, 

and will drive the contribution to (6.14-) from this source rapidly to 

zero by (U.55).    Note that the boundedness of the barrier terms requires 

that   gi
+'ni   

fee positive.    If   ^ '    is set to zero then (6.11) ensures 

that this condition will be met initially.    Provided strict complementarity 

holds, the convergence of the multiplier estimates will ensure that it 

must hold ultimately.    Of course, the calculation must be started from 

a feasible point. 
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Algorithm (ICP) 

(i)        Initialize   TV1'  , W^1' , u«  . "0 

(ii)      Minimize   R(x,W^k^'n^k^)    to determine   x,  , u. 

m 
(iii)     IF     £   uk g^XjP  < TOL   THEN STOP. 

(iv)       FOR I = 1 STEP 1 UNTIL M DO 

IF ABStg.^)) <DECR*ABS(g1(xk_1)) 

«if1' ■ -/^ > 

ELSE V)^1'  =  DBCR^W^. , 
ii ii ' 

THEN 

(k+l) 

(v)   K := K+l. 

(vi)  GO TO (ii) 

(ßiTi'^i 

Remark;  As in the previous algorithm (^)"  denotes the inverse og 

function to   *t- .    For example,  if   0 = - log g   then    f] = W . og 

Consider now another modified penalty function for the ECP 

S(x)  = f(x) -u(x)Th(x) +h(x)TWh(x) (6.12) 

where the matrix W is positive definite. 

Lemma 6.1:  If the second order sufficiency conditions hold for x = x , 

and the vh.(x ) , iel , are linearly independent then S(x) has a 
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local mlniraum at   x = x    provided   u(x) -«u     as   x -. x     and the 
** m* ****** m* t* 

smallest eigenvalue of W Is large enough. 

Proof:  We have 

7S(x*) = 7f(x*) -u(xY 7h(x*) 

h(x'(')T(7u(x*)-2W7h(x*)) 

7f(x ) -u 7h(x ) 

= 0 

as   u     is the vector of Lagrange multipliers for the BCP.    Thus   S 

has a stationary point for   x = x    .   Now 

7 S(x )  = 7 £(x ,u ) -7u(x )X7h(x ) 

7h(x*)V(x ) 

+ 27h(x*)TW7h(x*) (6.15) 

where terms which vanish at   x     have been ignored.   Corollary 3.2 can 

2      * now be applied to show   7 S(x )    is positive definite.   We set 

V = 7h(x*')T ,    U = 72l(x*,u*) - 7u(x*)T7h(x*) - 7h(x*)T7u(x*) , and note 
0**0 MM **     ** **     ** 9*    m* r*     m* 

that 

T T   2   , *   *\. min t U t = min tA 7   £(x ,u )t = m > 0 

^=0, Ht|l=i ~ ^=0, Htll=i ~ 

»ff 

as the second order sufficiency conditions hold at   x   .   G 
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Theorem 6.1;  Let the conditions of Lemma 5.1 hold at x  and set 

u(x) = B(x)+ vf(x)T (6.11+) 

where B(x) = 7h(x)  . Then (6.12) has a local minimum at x  provided 

the smallest eigenvalue of W is large enough. 

Proof;  This result is an immediate consequence of Lemma 6.1. As the 

7h.(x ) , id , are linearly independent,  B(x )  is a bounded 

operator for ||x - x || small enough. Thus u(x) -»u  as x -»x . D 

Remark;  (i) By using (6.lU) we can const.ruct a penalty function which 

is differentiable in a neighborhood of x  (contrast with (5*15)) and 
■x- 

which has a local minimum at x = x  for sufficiently large but finite 

values of the penalty parameter. However, (6.11+) requires first derivatives 

of the problem functions so that minimization of (6.12) with a method that 

requires first derivatives of S will require second derivatives of 

the problem functions. Two cases have been considered (Fletcher). 

(1)  S(x) = f(x) -h(x)TB(x)+vf(x)T+0||h(x)U2 , and (6.15)     2 

(ii) C(x) . f(x)-h(x)Vx)V(x)T+al|(B(x)+)Th(x)|l2 ,        (6.16) 

where a is a penalty parameter. J 

(ii)  There is a close connection between the penalty function (6.15) and 
2 

the algorithm based on (6.1) in the case i|f(h) = h . At a minimum of P 

we have (as    vP -■ 0 ) 

2W(h+9)   = - B+(7f)T     . (6.1?) 

j 
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Thus the correction formula corresponds to updating the Lagrange 

multiplier estimate by (6.1U) at the end of each unconstrained minimiza- 

tion rather than continuously which the use of   S   requires. 

(iii)     Note that    S(x)    can be interpreted as a Lagrangian.   For 

example, in the case   S(x)    is given by (6.16), 

S(x)  = X(x,w(x)) (6.18) 

where 

w(x)  = B(x)+7f(x)T-oB(x)+(B(x)+)Th(x) (6.19) 

Lemma 6.2;      w(t)    defined by (6.19)  is the vector of Lagrange multipliers 

for the problem 

(6.20) minimize f(t) + 7f(t)(x-t) + § |lx-tl|2 

x ~ ~~~       ^~~ 

subject to the linear constraints 

h(t)+7h(t)(x-t) = 0   , (6.21) 

provided this minimum exists. 

Proof;      Any point satisfying the constraints (6.21) has the form 

x = t-(B(t)T)+h(t)+A(t)z (6.22) 

where   B(t)aA(t) = 0 .    The multiplier relation for (6.20),  (6.21) is 

7f (t) + c(x-t)T = uTB(t)T 

so that   u    can be taken as (substituting (6.22)  into (6.25)) 

u = B(t)+{7f(t)T-ff(B(t)T)+h(t)}     .     D 
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If (6,22) is substituted into (6,20) the problem becomes one of 

minijnizing w.r.t.    z 

a   T  T 7f Az +| z  A A z 

whence 

z = - i (ATA)"1AT7fr    . (6.2U) 

min f(t) +Vf(t)(x-t) + | ||x-t||2 

the problem 

x 

subject to    g(t)+ 7g(t)(x-t) >0    . 

Under what conditions does    £   have an unconstrained minimum at    x    . 

What role does strict complementarity play in this problem? 

(ii)      (6.12) can be generalized to other penalty functions and to 

barrier functions (cf.    Remark (ii) above).   How much of the above 

analysis goes through?   What modifications are required?   Evaluate the 

resulting algorithms. 
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Thus    a   plays a role in ensuring that   x(t)  , the minimum of (6,20), 

cannot deviate far from   t    (cf.    remark (ii)  following MP   Corollary 5«l)» *^ | 

Example:      (i)    The Lagrangian interpretation provides a method for 

generalizing the above discussion to inequality constraints.   Consider 

the problan   min £(x,w(x))    where   w(t)    is the vector of multipliers for 
x ~ 

a 

' 

a 

.^tJ«aiLlJ^^*«L*J^^.^iJi^^^^ ....■.■■  ^.i;...^. .■^^^.,.„^..;t.v.,J....a„,.-l.-^   ■■ ..■-^■■...,^. ■_„■..v^.^.^Jf.^l....^^^.,  ■^.:..1,..^..,-l,.: 



PWP^WW^^W^^^W^^^^ww^ww^^^^^^^w^wwIIWUIII i».       iiiiBii.wiimwi.uii.i.iw.my     u m, .miw,» i m.i ■■i.i.nwi,.. ,   „I 

Notes 

1., 2.     See Fiacco and McCormlck's book.   Also the paper 'Penalty 

function methods for mathematical programming problems'; 

J. Math. Anal, and Applic. (1970), by Osbome and Ryan. 

3.     Fiacco and McCormick were the first to draw attention to the 

importance of these (as they were to much of the material in this 

section). 

U.     The log family is due to Osbome and Ryan.    The importance of the 

conditioning of the Hessian to Walter Murray.    Rate of convergence 

formulae have also been developed by F. A. Lootsma,   (Thesis, also 

survey paper at Dundee conference). 

5. Fiacco and McCormick.    The exact penalty function is due to 

Zangwill. 
2 

6. The algorithm for the BCP is due to Powell in the case   | = h 

(Harwell report, also Procedings of Keele Conference).   The exact 

penalty function   S(x)    is due to Fletcher who has developed it 

together with his student Shirley Lill and described it In several 

Harwell reports.    The extension to inequality constraints (example (i)) 

is also due to Fletcher. 
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